
ROBOTICS

Application manual
Controller software IRC5

Trace back information:
Workspace Main version a644
Checked in 2025-02-06
Skribenta version 5.6.018

Application manual
Controller software IRC5

RobotWare 6.16

Document ID: 3HAC050798-001
Revision: V

© Copyright 2014-2025 ABB. All rights reserved.
Specifications subject to change without notice.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.
Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damage to persons
or property, fitness for a specific purpose or the like.
In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.
This manual and parts thereof must not be reproduced or copied without ABB's
written permission.
Keep for future reference.
Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2014-2025 ABB. All rights reserved.
Specifications subject to change without notice.

Table of contents
11Overview of this manual ...
15Open source and 3rd party components ...

171 Introduction to RobotWare
171.1 Products, classes, and options ..
191.2 RAPID language and programming environment ...

232 RobotWare-OS
232.1 Advanced RAPID ..
232.1.1 Introduction to Advanced RAPID ..
242.1.2 Bit functionality ...
242.1.2.1 Overview ...
252.1.2.2 RAPID components ..
262.1.2.3 Bit functionality example ...
272.1.3 Data search functionality ..
272.1.3.1 Overview ...
282.1.3.2 RAPID components ..
292.1.3.3 Data search functionality examples ...
302.1.4 Alias I/O signals ..
302.1.4.1 Overview ...
312.1.4.2 RAPID components ..
322.1.4.3 Alias I/O functionality example ...
332.1.5 Configuration functionality ..
332.1.5.1 Overview ...
342.1.5.2 RAPID components ..
352.1.5.3 Configuration functionality example ..
362.1.6 Power failure functionality ...
362.1.6.1 Overview ...
372.1.6.2 RAPID components and system parameters
382.1.6.3 Power failure functionality example ...
392.1.7 Process support functionality ..
392.1.7.1 Overview ...
402.1.7.2 RAPID components ..
412.1.7.3 Process support functionality examples ...
432.1.8 Interrupt functionality ...
432.1.8.1 Overview ...
442.1.8.2 RAPID components ..
452.1.8.3 Interrupt functionality examples ...
462.1.9 User message functionality ...
462.1.9.1 Overview ...
472.1.9.2 RAPID components ..
482.1.9.3 User message functionality examples ..
502.1.9.4 Text table files ..
512.1.10 RAPID support functionality ..
512.1.10.1 Overview ...
522.1.10.2 RAPID components ..
532.1.10.3 RAPID support functionality examples ...
542.2 Analog Signal Interrupt ...
542.2.1 Introduction to Analog Signal Interrupt ..
552.2.2 RAPID components ...
562.2.3 Code example ..
572.3 Cyclic bool ...
572.3.1 Cyclically evaluated logical conditions ..
602.3.2 Cyclic bool examples ...
632.3.3 System parameters ...
642.3.4 RAPID components ...

Application manual - Controller software IRC5 5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Table of contents

652.4 Electronically Linked Motors ..
652.4.1 Overview ...
672.4.2 Configuration ...
672.4.2.1 System parameters ..
692.4.2.2 Configuration example ..
702.4.3 Managing a follower axis ..
702.4.3.1 Using the service routine for a follower axis
722.4.3.2 Calibrate follower axis position ...
742.4.3.3 Reset follower axis ..
752.4.4 Tuning a torque follower ...
752.4.4.1 Torque follower descriptions ..
762.4.4.2 Using the service routine to tune a torque follower
782.4.5 Data setup ...
782.4.5.1 Set up data for the service routine ..
802.4.5.2 Example of data setup ..
822.5 Fixed Position Events ..
822.5.1 Overview ...
832.5.2 RAPID components and system parameters ...
862.5.3 Code examples ...
882.6 File and I/O device handling ..
882.6.1 Introduction to file and I/O device handling ...
892.6.2 Binary and character based communication ...
892.6.2.1 Overview ...
902.6.2.2 RAPID components ..
912.6.2.3 Code examples ...
932.6.3 Raw data communication ..
932.6.3.1 Overview ...
942.6.3.2 RAPID components ..
952.6.3.3 Code examples ...
972.6.4 File and directory management ..
972.6.4.1 Overview ...
982.6.4.2 RAPID components ..
992.6.4.3 Code examples ...

1012.7 Device Command Interface ...
1012.7.1 Introduction to Device Command Interface ...
1022.7.2 RAPID components and system parameters ...
1032.7.3 Code example ..
1052.8 Logical Cross Connections ...
1052.8.1 Introduction to Logical Cross Connections ...
1062.8.2 Configuring Logical Cross Connections ...
1072.8.3 Examples ..
1092.8.4 Limitations ...
1102.9 Connected Services ...
1102.9.1 Overview ...
1122.9.2 Connected Services connectivity ..
1142.9.3 Configuration - system parameters ...
1162.9.4 Configuring Connected Services ..
1192.9.5 Configuring Connected Services using gateway box
1232.9.6 Connected Services on LAN 3 ...
1252.9.7 Connected Services registration ..
1272.9.8 Connected Services information ..
1322.10 User logs ...
1322.10.1 Introduction to User logs ..

1353 Motion performance
1353.1 Absolute Accuracy [603-1, 603-2] ...
1353.1.1 About Absolute Accuracy ...
1373.1.2 Useful tools ..
1383.1.3 Configuration ...

6 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Table of contents

1403.1.4 Maintenance ..
1403.1.4.1 Maintenance that affect the accuracy ..
1423.1.4.2 Loss of accuracy ...
1433.1.5 Compensation theory ...
1433.1.5.1 Error sources ..
1443.1.5.2 Absolute Accuracy compensation ...
1463.1.6 Preparation of Absolute Accuracy robot ..
1463.1.6.1 ABB calibration process ..
1483.1.6.2 Birth certificate ..
1493.1.6.3 Compensation parameters ..
1503.1.7 Cell alignment ..
1503.1.7.1 Overview ...
1513.1.7.2 Measure fixture alignment ...
1523.1.7.3 Measure robot alignment ..
1533.1.7.4 Frame relationships ...
1543.1.7.5 Tool calibration ...
1553.2 Advanced Robot Motion [687-1] ...
1563.3 Advanced Shape Tuning [included in 687-1] ...
1563.3.1 About Advanced Shape Tuning ..
1573.3.2 Automatic friction tuning ...
1593.3.3 Manual friction tuning ..
1613.3.4 System parameters ...
1613.3.4.1 System parameters ..
1623.3.4.2 Setting tuning system parameters ...
1633.3.5 RAPID components ...
1643.4 Motion Process Mode [included in 687-1] ...
1643.4.1 About Motion Process Mode ...
1663.4.2 User-defined modes ..
1683.4.3 General information about robot tuning ...
1713.4.4 Additional information ..
1723.5 Wrist Move [included in 687-1] ...
1723.5.1 Introduction to Wrist Move ..
1743.5.2 Cut plane frame ..
1763.5.3 RAPID components ...
1773.5.4 RAPID code, examples ...
1793.5.5 Troubleshooting ..

1814 Motion coordination
1814.1 Machine Synchronization [607-1], [607-2] ...
1814.1.1 Overview ...
1834.1.2 What is needed ...
1854.1.3 Synchronization features ..
1864.1.4 General description of the synchronization process
1874.1.5 Limitations ...
1884.1.6 Hardware installation for Sensor Synchronization ..
1884.1.6.1 Encoder specification ...
1894.1.6.2 Encoder description ...
1904.1.6.3 Installation recommendations ..
1914.1.6.4 Connecting encoder and encoder interface unit
1934.1.7 Hardware installation for Analog Synchronization ..
1934.1.7.1 Required hardware ..
1944.1.8 Software installation ..
1944.1.8.1 Sensor installation ...
1964.1.8.2 Reloading saved Motion parameters ...
1974.1.8.3 Installation of several sensors ..
1984.1.9 Programming the synchronization ..
1984.1.9.1 General issues when programming with the synchronization option
2004.1.9.2 Programming examples ..
2024.1.9.3 Entering and exiting coordinated motion in corner zones

Application manual - Controller software IRC5 7
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Table of contents

2034.1.9.4 Use several sensors ...
2044.1.9.5 Finepoint programming ...
2054.1.9.6 Drop sensor object ..
2064.1.9.7 Information on the FlexPendant ..
2074.1.9.8 Programming considerations ...
2094.1.9.9 Modes of operation ..
2114.1.10 Robot to robot synchronization ..
2114.1.10.1 Introduction ..
2124.1.10.2 The concept of robot to robot synchronization
2134.1.10.3 Master robot configuration parameters ..
2164.1.10.4 Slave robot configuration parameters ..
2194.1.10.5 Programming example for master robot ...
2214.1.10.6 Programming example for slave robot ...
2224.1.11 Synchronize with hydraulic press using recorded profile
2224.1.11.1 Introduction ..
2234.1.11.2 Configuration of system parameters ..
2254.1.11.3 Program example ..
2264.1.12 Synchronize with molding machine using recorded profile
2264.1.12.1 Introduction ..
2274.1.12.2 Configuration of system parameters ..
2294.1.12.3 Program example ..
2304.1.13 Supervision ..
2314.1.14 System parameters ...
2344.1.15 I/O signals ...
2354.1.16 RAPID components ...

2375 Motion Events
2375.1 World Zones [608-1] ..
2375.1.1 Overview of World Zones ..
2395.1.2 RAPID components ...
2415.1.3 Code examples ...

2436 Motion functions
2436.1 Independent Axis [610-1] ..
2436.1.1 Overview ...
2456.1.2 System parameters ...
2466.1.3 RAPID components ...
2476.1.4 Code examples ...
2496.2 Path Recovery [611-1] ..
2496.2.1 Overview ...
2506.2.2 RAPID components ...
2516.2.3 Store current path ...
2576.2.4 Path recorder ...
2646.3 Path Offset [612-1] ...
2646.3.1 Overview ...
2666.3.2 RAPID components ...
2676.3.3 Related RAPID functionality ..
2686.3.4 Code example ..

2697 Motion Supervision
2697.1 Collision Detection [613-1] ..
2697.1.1 Overview ...
2717.1.2 Limitations ...
2727.1.3 What happens at a collision ...
2747.1.4 Additional information ..
2757.1.5 Configuration and programming facilities ...
2757.1.5.1 System parameters ..
2777.1.5.2 RAPID components ..

8 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Table of contents

2787.1.5.3 Signals ..
2797.1.6 How to use Collision Detection ..
2797.1.6.1 Set up system parameters ...
2807.1.6.2 Adjust supervision from FlexPendant ..
2817.1.6.3 Adjust supervision from RAPID program ..
2827.1.6.4 How to avoid false triggering ...
2837.1.7 Collision Avoidance ..
2867.2 SafeMove Assistant ...

2898 Communication
2898.1 FTP Client [614-1] ...
2898.1.1 Introduction to FTP Client ...
2918.1.2 System parameters ...
2928.1.3 Examples ..
2938.2 SFTP Client [614-1] ..
2938.2.1 Introduction to SFTP Client ...
2958.2.2 System parameters ...
2968.2.3 Examples ..
2978.3 NFS Client [614-1] ...
2978.3.1 Introduction to NFS Client ...
2998.3.2 System parameters ...
3008.3.3 Examples ..
3018.4 PC Interface [616-1] ...
3018.4.1 Introduction to PC Interface ...
3028.4.2 Send variable from RAPID ..
3048.4.3 ABB software using PC Interface ...
3058.5 Socket Messaging [616-1] ...
3058.5.1 Introduction to Socket Messaging ..
3068.5.2 Schematic picture of socket communication ...
3078.5.3 Technical facts about Socket Messaging ...
3088.5.4 RAPID components ...
3108.5.5 Code examples for Socket Messaging ...
3128.6 RAPID Message Queue [included in 616-1, 623-1] ...
3128.6.1 Introduction to RAPID Message Queue ...
3138.6.2 RAPID Message Queue behavior ...
3178.6.3 System parameters ...
3188.6.4 RAPID components ...
3198.6.5 Code examples ...

3239 Engineering tools
3239.1 Multitasking [623-1] ...
3239.1.1 Introduction to Multitasking ...
3259.1.2 System parameters ...
3279.1.3 RAPID components ...
3289.1.4 Task configuration ...
3289.1.4.1 Debug strategies for setting up tasks ..
3309.1.4.2 Priorities ..
3329.1.4.3 Task Panel Settings ...
3339.1.4.4 Select which tasks to start with START button
3359.1.5 Communication between tasks ..
3359.1.5.1 Persistent variables ...
3379.1.5.2 Waiting for other tasks ..
3399.1.5.3 Synchronizing between tasks ...
3419.1.5.4 Using a dispatcher ...
3439.1.6 Other programming issues ..
3439.1.6.1 Share resource between tasks ...
3449.1.6.2 Test if task controls mechanical unit ..
3459.1.6.3 taskid ..
3469.1.6.4 Avoid heavy loops ...

Application manual - Controller software IRC5 9
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Table of contents

3479.2 Sensor Interface [628-1] ...
3479.2.1 Introduction to Sensor Interface ...
3489.2.2 Configuring sensors ..
3489.2.2.1 About the sensors ...
3499.2.2.2 Configuring sensors on serial channels ...
3509.2.2.3 Configuring sensors on Ethernet channels
3519.2.3 RAPID ...
3519.2.3.1 RAPID components ..
3549.2.4 Examples ..
3549.2.4.1 Code examples ...
3569.3 Robot Reference Interface [included in 689-1] ..
3569.3.1 Introduction to Robot Reference Interface ..
3579.3.2 Installation ...
3579.3.2.1 Connecting the communication cable ..
3589.3.2.2 Prerequisites ..
3599.3.2.3 Data orchestration ...
3619.3.2.4 Supported data types ...
3629.3.3 Configuration ...
3629.3.3.1 Interface configuration ..
3639.3.3.2 Interface settings ...
3649.3.3.3 Device description ...
3679.3.3.4 Device configuration ..
3709.3.4 Configuration examples ..
3709.3.4.1 RAPID programming ..
3719.3.4.2 Example configuration ..
3769.3.5 RAPID components ...
3779.4 Auto Acknowledge Input ...

37910 Tool control options
37910.1 Servo Tool Change [630-1] ..
37910.1.1 Overview ...
38010.1.2 Requirements and limitations ..
38210.1.3 Configuration ...
38310.1.4 Connection relay ...
38510.1.5 Tool change procedure ..
38610.1.6 Jogging servo tools with activation disabled ...
38710.2 Tool Control [1180-1] ...
38710.2.1 Overview ...
38810.2.2 Servo tool movements ...
38910.2.3 Tip management ...
39110.2.4 Supervision ..
39210.2.5 RAPID components ...
39310.2.6 System parameters ...
39810.2.7 Commissioning and service ..
40010.2.8 Mechanical unit calibrations ..
40110.2.9 RAPID code example ...
40210.2.10 Using tool control for gripper applications ..
40410.3 I/O Controlled Axes [included in 1180-1] ..
40410.3.1 Overview ...
40510.3.2 Contouring error ...
40610.3.3 Correcting the position ...
40710.3.4 Tool changing ...
40810.3.5 Installation ...
40910.3.6 Configuration ...
41110.3.7 System parameters ...
41310.3.8 RAPID programming ..

415Index

10 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Table of contents

Overview of this manual
About this manual

This manual explains the basics of when and how to use various RobotWare options
and functions.

Usage
This manual can be used either as a reference to find out if an option is the right
choice for solving a problem, or as a description of how to use an option. Detailed
information regarding syntax for RAPID routines, and similar, is not described here,
but can be found in the respective reference manual.

Who should read this manual?
This manual is intended for robot programmers.

Prerequisites
The reader should...

• be familiar with industrial robots and their terminology.
• be familiar with the RAPID programming language.
• be familiar with system parameters and how to configure them.

References

Document IDReference

3HAC050945-001Product specification - Controller software IRC5
IRC5 with main computer DSQC1000 (or later) and RobotWare 6.

3HAC047400-001Product specification - Controller IRC5
IRC5 with main computer DSQC1000 or later.

3HAC032104-001Operating manual - RobotStudio

3HAC050941-001Operating manual - IRC5 with FlexPendant

3HAC050917-001Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC050947-001Technical reference manual - RAPID Overview

3HAC050948-001Technical reference manual - System parameters

Revisions

DescriptionRevision

Released with RobotWare 6.0.-
First release.

Released with RobotWare 6.01.A
• Added Auto Acknowledge Input, see Auto Acknowledge Input on

page 377.
• The functionality of RAPID Message Queue is corrected, see RAPID

Message Queue [included in 616-1, 623-1] on page 312.
• Minor corrections.

Continues on next page
Application manual - Controller software IRC5 11
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Overview of this manual

DescriptionRevision

Released with RobotWare 6.02.B
• Updated the path to the template files, for UdpUc code examples and

Commissioning and service on page 398.
• The TCP ports and protocols are updated for the option Sensor Interface

[628-1], see Configuring sensors on Ethernet channels on page 350.
• Added the functionality EGM Path Correction with corresponding

RAPID instructions.
• Bundled options are reordered in the manual according to the parent

option.
• Updated the LTAPP variable list available for optical tracking, see

Constants on page 352.

Released with RobotWare 6.03.C
• Added the functionality Cyclic bool on page 57.
• Added the functionality Remote Service Embedded.
• Functionality is added and updated for option Motion Process Mode

[included in 687-1] on page 164.
• The option Servo Tool Control [included in 635-6] is replaced by the

option Tool Control [1180-1] on page 387.
• Added the option I/O Controlled Axes [included in 1180-1] on page404.
• Minor corrections.

Released with RobotWare 6.04.D
• Added the possibility to configure Cyclic bool, see Configuration on

page 58.
• Updated the section Common limitations for EGM.
• Added information on how a 7-axis robot can be used with EGM joint

mode.
• Added new constants for the option Sensor Interface, see Constants

on page 352.
• Updated the option I/O Controlled Axes, see I/O Controlled Axes [in-

cluded in 1180-1] on page 404.
• Remote Service Embedded is updated and renamed to Connected

Services. See Connected Services on page 110.
• Added procedure for Configuring Connected Services. SeeConfiguring

Connected Services on page 116.

Released with RobotWare 6.05.E
• Added the functionality User logs on page 132.
• Added new section, Connected Services on LAN 3 on page 123.
• Added the functionalityRemote control of operatingmode on page377.
• Minor corrections.

Released with RobotWare 6.06.F
• Minor corrections.

Released with RobotWare 6.07.G
• Corrections in the code examples for Robot Reference Interface.
• Added info about copying service program file and loading cfg files for

the function Electronically Linked Motors on page 65.
• Added protocol LTPROTOBUF to Sensor Interface [628-1] on page347.
• Added section SFTP Client [614-1] on page 293.
• Added information about EGM Position Stream.

Released with RobotWare 6.08.H
• Added Press tending mode to Motion Process Mode.
• Added information about directory listing style to FTP Client.

Continues on next page
12 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

Overview of this manual
Continued

DescriptionRevision
• Added information about multiple mechanical units and motion tasks

to Externally Guided Motion [689-1].
• Maximum length for file paths inNFSClient increased to 248 characters.
• Added information about SFTP setting to SFTP Client [614-1] on

page 293.
• Added Collision Avoidance on page 283.
• EGM RAPID instructions EGMStreamStart and EGMStreamStop

corrected.

Released with RobotWare 6.09.J
• Section Independent Axis [610-1] on page 243 updated with detailed

information about limitations for option Independent Axes.
• Section EGM updated with information about sampling time.
• Section ABB software using PC Interface on page 304 corrected.
• Updated information about Absolute Accuracy.

Released with RobotWare 6.10.K
• Updated information in Advanced RAPID about encoding of text table

files.
• The information regarding Externally Guided Motion is moved to a

separate manual, 3HAC073319-001.
• List of limitations of supported robots updated in section Collision

Avoidance on page 283.

Released with RobotWare 6.10.01.L
• Information regarding disabling of Collision Avoidance updated in

section Collision Avoidance on page 283.

Released with RobotWare 6.11.M
• Added information regarding servo tool in the following sections:

Overviewonpage387,Tipmanagement onpage389,RAPIDcomponents
on page 392

• Added accuracy limitation for Absolute Accuracy and MultiMove, see
About Absolute Accuracy on page 135.

Released with RobotWare 6.12.N
• NOTE added in sectionData orchestration on page359 that work object

data needs to refer to a fixed work object.
• Minor change in section Text table files on page 50.
• Information about the digital output MotSupOn updated in section

Signals on page 278.
• SectionSystemparameters on page317 updated with information about

how to adjust the values of the attributes RMQ Max Message Size and
RMQ Max No Of Messages.

• Limitation for MultiMove removed in section About Absolute Accuracy
on page 135.

Released with RobotWare 6.13.P
• Minor corrections in sections FTP Client [614-1] on page 289, SFTP

Client [614-1] on page 293 and NFS Client [614-1] on page 297.
• Updated limitation for Collision Avoidance on page 283.

Released with RobotWare 6.13.02.Q
• Updated the section Connected Services on LAN 3 on page 123.
• Updated limitation regarding lead-through, see Overview of World

Zones on page 237.
• Added the section SafeMove Assistant on page 286.

Released with RobotWare 6.14.R
• An incorrect prerequisite regarding a software option is removed for

Tool Control [1180-1] on page 387.

Continues on next page
Application manual - Controller software IRC5 13
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Overview of this manual
Continued

DescriptionRevision

Released with RobotWare 6.15.S
• Added information about deactivation/deactivation and trigger signals,

see Collision Avoidance on page 283.
• Corrected graphic in section Connected Services registration on

page 125.

Released with RobotWare 6.15.07.T
• Updated the server error details in the section Advanced page on

page 130.
• Added clarification regarding the option PC Interface.

Released with RobotWare 6.15.08.U
• Added limitation in Independent Axis regarding tool control.

Released with RobotWare 6.16.V
• Added the section RAPID language and programming environment on

page 19.
• Minor corrections.

14 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Overview of this manual
Continued

Open source and 3rd party components
Open source and 3rd party components

ABB products use software provided by third parties, including open source
software. The following copyright statements and licenses apply to various
components that are distributed inside the ABB software. Each ABB product does
not necessarily use all of the listed third party software components. Licensee
must fully agree and comply with these license terms or the user is not entitled to
use the product. Start using the ABB software means accepting also referred
license terms. The third party license terms apply only to the respective software
to which the license pertains, and the third party license terms do not apply to ABB
products. With regard to programs provided under the GNU general public license
and the GNU lesser general public license licensor will provide licensee on demand,
a machine-readable copy of the corresponding source code. This offer is valid for
a period of three years after delivery of the product.
ABB software is licensed under the ABB end user license agreement, which is
provided separately.

RobotWare
For RobotWare, there is license information in the folder \licenses in the RobotWare
distribution package.

OpenSSL
This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit. (http://www.openssl.org/)
This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

CTM
For OleOS, the Linux based operating system used on the conveyor tracking
module (CTM), a list of copyright statements and licenses is available in the file
/etc/licenses.txt located on the CTM board and accessible via the console port or
by downloading the file over SFTP.
For the CTM application, a list of copyright statements and licenses is available in
the file /opt/ABB.com/ctm/licenses.txt located on the CTM board and accessible
via the console port or by downloading the file over SFTP.

Application manual - Controller software IRC5 15
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Open source and 3rd party components

This page is intentionally left blank

1 Introduction to RobotWare
1.1 Products, classes, and options

Software products
RobotWare is a family of software products from ABB Robotics. The products are
designed to make you more productive and lower your cost of owning and operating
a robot. ABB Robotics has invested many years into the development of these
products and they represent knowledge and experience based on several thousands
of robot installations.

Product classes
Within the RobotWare family, there are different classes of products:

DescriptionProduct classes

This is the operating system of the robot. RobotWare-OS provides
all the necessary features for fundamental robot programming and
operation. It is an inherent part of the robot, but can be provided
separately for upgrading purposes.

RobotWare-OS

For a description of RobotWare-OS, see the product specification
for the robot controller.

These products are options that run on top of RobotWare-OS. They
are intended for robot users that need additional functionality for
motion control, communication, system engineering, or applications.

Note

Not all RobotWare options are described in this manual. Some op-
tions are more comprehensive and are therefore described in sep-
arate manuals.

RobotWare options

These are extensive packages for specific process application like
spot welding, arc welding, and dispensing. They are primarily de-
signed to improve the process result and to simplify installation and
programming of the application.

Process application
options

The process application options are all described in separate
manuals.

A RobotWare Add-in is a self-contained package that extends the
functionality of the robot system.

RobotWare Add-ins

Some software products from ABB Robotics are delivered as Add-
ins. For example track motion (IRT), positioner (IRP), and standalone
controller. For more information see the product specification for
the robot controller.
The purpose of RobotWare Add-ins is also that a robot program
developer outside of ABB can create options for the ABB robots,
and sell the options to their customers. For more information on
creating RobotWare Add-ins, contact your local ABB Robotics rep-
resentative at www.abb.com/contacts.

Continues on next page
Application manual - Controller software IRC5 17
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

1 Introduction to RobotWare
1.1 Products, classes, and options

http://www.abb.com/contacts

Option groups
For OmniCore, the RobotWare options have been gathered in groups, depending
on the customer benefit. The goal is to make it easier to understand the customer
value of the options. However, all options are purchased individually. The groups
are as follows:

DescriptionOption groups

Options that optimize the performance of your robot.Motion performance

Options that make your robot coordinated with external equipment
or other robots.

Motion coordination

Options that supervises the position of the robot.Motion Events

Options that control the path of the robot.Motion functions

Options that supervises the movement of the robot.Motion Supervision

Options that make the robot communicate with other equipment.
(External PCs etc.)

Communication

Options for the advanced robot integrator.Engineering tools

Options that make the robot controller operate external motors, in-
dependent of the robot.

Servo motor control

Note

Not all RobotWare options are described in this manual. Some options are more
comprehensive and are therefore described in separate manuals.

18 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

1 Introduction to RobotWare
1.1 Products, classes, and options
Continued

1.2 RAPID language and programming environment

General
RAPID is the primary programming language used for ABB Robotics, designed to
facilitate the control and automation of industrial robots. It is a high-level language
that is both powerful and user-friendly, making it accessible for both novice and
experienced programmers. Its syntax and structure are designed to be intuitive,
reducing the learning curve for new users.
RAPID is suitable for a wide range of applications, from simple pick-and-place
tasks to complex assembly operations. The language is designed to be reliable
and robust, ensuring consistent performance in industrial environments.

Key features of RAPID
RAPID uses a structured text format similar to other programming languages like
Python or C, which includes loops, conditionals, and variable handling. It excels
in handling complex motion commands, allowing precise control over robot
movements.
RAPID supports various data types and operations, enabling efficient data handling
and processing. Users can create custom functions and procedures, enhancing
the flexibility and adaptability of the programming environment.
It allows seamless communication with external devices and systems, making it
ideal for integrated automation solutions.
Overall, RAPID is a versatile and powerful tool that enhances the capabilities of
ABB robots, making automation more efficient and accessible.

Summary of the RAPID concept
• Hierarchical and modular program structure to support structured

programming and reuse
• Routines can be Functions or Procedures
• Local or global data and routines
• Data typing, including structured and array data types
• User defined names on variables, routines, and I/O
• Extensive program flow control
• Arithmetic and logical expressions
• Interrupt handling
• Error handling
• User defined instructions (appear as an inherent part of the system)
• Backward handler (user definition of how a procedure should behave when

stepping backwards)
• Many powerful built-in functions, for example mathematics and robot specific
• Unlimited language (no maximum number of variables etc., only memory

limited). Built-in RAPID support in user interfaces, for example user defined
pick lists, facilitate working with RAPID.

• Support for Unicode symbols in strings and comments

Continues on next page
Application manual - Controller software IRC5 19
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

1 Introduction to RobotWare
1.2 RAPID language and programming environment

Ease of use
Creating and editing RAPID programs is done using the integrated code editors
in RobotStudio or on the FlexPendant. Additionally, there is an app for the
FlexPendant called Wizard, where RAPID programming is further simplified to
block programming.
RAPID programs can range from simple movement procedures to complex
structures including sending and receiving data from sensors, cameras, I/O devices,
other machines, and more. This to enable a highly flexible automation, utilizing the
robot's capability.

Simple RAPID program examples

Hello world
MODULE HelloWorld

PROC main()

TPWrite "Hello, World!";

ENDPROC

ENDMODULE

In this example:
The module HelloWorld defines a module named HelloWorld.
PROC main() defines a procedure named main.
TPWrite "Hello, World!"; is the command that outputs "Hello, World!" to the
FlexPendant.

Displaying messages on the FlexPendant
MODULE MainModule

VAR num length;

VAR num width;

VAR num area;

PROC main()

length := 10;

width := 5;

area := length * width;

TPWrite "The area of the rectangle is " \Num:=area;

ENDPROC

ENDMODULE

This program will calculate the area of a rectangle and show the answer on the
FlexPendant.

The area of the rectangle is 50

Continues on next page
20 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

1 Introduction to RobotWare
1.2 RAPID language and programming environment
Continued

Draw a square
The robot is holding a pen above a piece of paper on a table. This program will
make the robot move the tip of the pen down to the paper and then draw a square.

xx0700000362

PERS tooldata tPen := [TRUE, [[200, 0, 30], [1, 0, 0 ,0]], [0.8,
[62, 0, 17], [1, 0, 0, 0], 0, 0, 0]];

CONST robtarget p10 := [[600, -100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p20 := [[600, 100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p30 := [[800, 100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p40 := [[800, -100, 800], [0.707170, 0, 0.707170,
0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

PROC main()

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

Draw an arc
To add a curve or arc to the previous program, the instruction MoveC is added.

MoveL p10, v500, fine, tPen;

MoveC p20, p30, v500, fine, tPen;

MoveL p40, v500, fine, tPen;

Continues on next page
Application manual - Controller software IRC5 21
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

1 Introduction to RobotWare
1.2 RAPID language and programming environment

Continued

xx0700000364

References
The RAPID programming language is described in detail in the following documents.

Where to read about itWhat do you want to know

Technical referencemanual - RAP-
ID Overview

• More detailed information about the functionality
• What instructions are there for a specific cat-

egory, for example, move instructions
• Descriptions of specific functionality, for example,

interrupts or error handling

Technical referencemanual - RAP-
ID Instructions, Functions and
Data types

• Information about a specific instruction, function,
or data type

Technical referencemanual - RAP-
ID kernel

• Details about how the robot controller handles
different parts of RAPID

22 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

1 Introduction to RobotWare
1.2 RAPID language and programming environment
Continued

2 RobotWare-OS
2.1 Advanced RAPID

2.1.1 Introduction to Advanced RAPID

Introduction to Advanced RAPID
The RobotWare base functionality Advanced RAPID is intended for robot
programmers who develop applications that require advanced functionality.
Advanced RAPID includes many different types of functionality, which can be
divided into these groups:

DescriptionFunctionality group

Bitwise operations on a byte.Bit functionality

Search and get/set data objects (e.g. variables).Data search functionality

Give an I/O signal an optional alias name.Alias I/O functionality

Get/set system parameters.Configuration functionality

Restore signals after power failure.Power failure functionality

Useful when creating process applications.Process support functionality

More interrupt functionality than included in Robot-
Ware base functionality.

Interrupt functionality

Error messages and other texts.User message functionality

Miscellaneous support for the programmer.RAPID support functionality

Application manual - Controller software IRC5 23
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.1 Introduction to Advanced RAPID

2.1.2 Bit functionality

2.1.2.1 Overview

Purpose
The purpose of the bit functionality is to be able to make operations on a byte,
seen as 8 digital bits. It is possible to get or set a single bit, or make logical
operations on a byte. These operations are useful, for example, when handling
serial communication or group of digital I/O signals.

What is included
Bit functionality includes:

• The data type byte.
• Instructions used set a bit value: BitSet and BitClear.
• Function used to get a bit value: BitCheck.
• Functions used to make logical operations on a byte: BitAnd, BitOr,

BitXOr, BitNeg, BitLSh, and BitRSh.

24 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.2.1 Overview

2.1.2.2 RAPID components

Data types
This is a brief description of each data type used for the bit functionality. For more
information, see the respective data type in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionData type

The data type byte represent a decimal value between 0 and 255.byte

Instructions
This is a brief description of each instruction used for the bit functionality. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

BitSet is used to set a specified bit to 1 in a defined byte data.BitSet

BitClear is used to clear (set to 0) a specified bit in a defined byte data.BitClear

Functions
This is a brief description of each function used for the bit functionality. For more
information, see the respective function in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

BitAnd is used to execute a logical bitwise AND operation on data types
byte.

BitAnd

BitOr is used to execute a logical bitwise OR operation on data types byte.BitOr

BitXOr (Bit eXclusive Or) is used to execute a logical bitwise XOR operation
on data types byte.

BitXOr

BitNeg is used to execute a logical bitwise negation operation (one’s
complement) on data types byte.

BitNeg

BitLSh (Bit Left Shift) is used to execute a logical bitwise left shift operation
on data types byte.

BitLSh

BitRSh (Bit Right Shift) is used to execute a logical bitwise right shift oper-
ation on data types byte.

BitRSh

BitCheck is used to check if a specified bit in a defined byte data is set to
1.

BitCheck

Tip

Even though not part of the option, the functions for conversion between a byte
and a string, StrToByte and ByteToStr, are often used together with the bit
functionality.

Application manual - Controller software IRC5 25
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.2.2 RAPID components

2.1.2.3 Bit functionality example

Program code
CONST num parity_bit := 8;

!Set data1 to 00100110

VAR byte data1 := 38;

!Set data2 to 00100010

VAR byte data2 := 34;

VAR byte data3;

!Set data3 to 00100010

data3 := BitAnd(data1, data2);

!Set data3 to 00100110

data3 := BitOr(data1, data2);

!Set data3 to 00000100

data3 := BitXOr(data1, data2);

!Set data3 to 11011001

data3 := BitNeg(data1);

!Set data3 to 10011000

data3 := BitLSh(data1, 2);

!Set data3 to 00010011

data3 := BitRSh(data1, 1);

!Set data1 to 10100110

BitSet data1, parity_bit;

!Set data1 to 00100110

BitClear data1, parity_bit;

!If parity_bit is 0, set it to 1

IF BitCheck(data1, parity_bit) = FALSE THEN

BitSet data1, parity_bit;

ENDIF

26 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.2.3 Bit functionality example

2.1.3 Data search functionality

2.1.3.1 Overview

Purpose
The purpose of the data search functionality is to search and get/set values for
data objects of a certain type.
Here are some examples of applications for the data search functionality:

• Setting a value to a variable, when the variable name is only available in a
string.

• List all variables of a certain type.
• Set a new value for a set of similar variables with similar names.

What is included
Data search functionality includes:

• The data type datapos.
• Instructions used to find a set of data objects and get or set their

values:SetDataSearch, GetDataVal, SetDataVal, and SetAllDataVal.
• A function for traversing the search result: GetNextSym.

Application manual - Controller software IRC5 27
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.3.1 Overview

2.1.3.2 RAPID components

Data types
This is a brief description of each data type used for the data search functionality.
For more information, see the respective data type in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

datapos is the enclosing block to a data object (internal system data)
retrieved with the function GetNextSym.

datapos

Instructions
This is a brief description of each instruction used for the data search functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

SetDataSearch is used together with GetNextSym to retrieve data ob-
jects from the system.

SetDataSearch

GetDataVal makes it possible to get a value from a data object that is
specified with a string variable, or from a data object retrieved with
GetNextSym.

GetDataVal

SetDataVal makes it possible to set a value for a data object that is
specified with a string variable, or from a data object retrieved with
GetNextSym.

SetDataVal

SetAllDataVal make it possible to set a new value to all data objects
of a certain type that match the given grammar.

SetAllDataVal

Functions
This is a brief description of each function used for the data search functionality.
For more information, see the respective function in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

GetNextSym (Get Next Symbol) is used together with SetDataSearch to
retrieve data objects from the system.

GetNextSym

28 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.3.2 RAPID components

2.1.3.3 Data search functionality examples

Set unknown variable
This is an example of how to set the value of a variable when the name of the
variable is unknown when programming, and only provided in a string.

VAR string my_string;

VAR num my_number;

VAR num new_value:=10;

my_string := "my_number";

!Set value to 10 for variable specified by my_string

SetDataVal my_string,new_value;

Reset a range of variables
This is an example where all numeric variables starting with "my" is reset to 0.

VAR string my_string:="my.*";

VAR num zerovar:=0;

SetAllDataVal "num"\Object:=my_string,zerovar;

List/set certain variables
In this example, all numeric variables in the module "mymod" starting with "my"
are listed on the FlexPendant and then reset to 0.

VAR datapos block;

VAR string name;

VAR num valuevar;

VAR num zerovar:=0;

!Search for all num variables starting with "my" in the module
"mymod"

SetDataSearch "num"\Object:="my.*"\InMod:="mymod";

!Loop through the search result

WHILE GetNextSym(name,block) DO

!Read the value from each found variable

GetDataVal name\Block:=block,valuevar;

!Write name and value for each found variable

TPWrite name+" = "\Num:=valuevar;

!Set the value to 0 for each found variables

SetDataVal name\Block:=block,zerovar;

ENDWHILE

Application manual - Controller software IRC5 29
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.3.3 Data search functionality examples

2.1.4 Alias I/O signals

2.1.4.1 Overview

Purpose
The Alias I/O functionality gives the programmer the ability to use any name on a
signal and connect that name to a configured I/O signal.
This is useful when a RAPID program is reused between different systems. Instead
of rewriting the code, using a signal name that exist on the new system, the signal
name used in the program can be defined as an alias name.

What is included
Alias I/O functionality consists of the instruction AliasIO.

30 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.4.1 Overview

2.1.4.2 RAPID components

Data types
There are no RAPID data types for the Alias I/O functionality.

Instructions
This is a brief description of each instruction used for the Alias I/O functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

AliasIO is used to define a signal of any type with an alias name, or to
use signals in built-in task modules. The alias name is connected to a
configured I/O signal.

AliasIO

The instruction AliasIO must be run before any use of the actual signal.

Functions
There are no RAPID functions for the Alias I/O functionality.

Application manual - Controller software IRC5 31
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.4.2 RAPID components

2.1.4.3 Alias I/O functionality example

Assign alias name to signal
This example shows how to define the digital output signal alias_do to be
connected to the configured digital output I/O signal config_do.
The routine prog_start is connected to the START event.
This will ensure that "alias_do" can be used in the RAPID code even though there
is no configured signal with that name.

VAR signaldo alias_do;

PROC prog_start()

AliasIO config_do, alias_do;

ENDPROC

32 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.4.3 Alias I/O functionality example

2.1.5 Configuration functionality

2.1.5.1 Overview

Purpose
The configuration functionality gives the programmer access to the system
parameters at run time. The parameter values can be read and edited. The controller
can be restarted in order for the new parameter values to take effect.

What is included
Configuration functionality includes the instructions:ReadCfgData, WriteCfgData,
and WarmStart.

Application manual - Controller software IRC5 33
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.5.1 Overview

2.1.5.2 RAPID components

Data types
There are no RAPID data types for the configuration functionality.

Instructions
This is a brief description of each instruction used for the configuration functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

ReadCfgData is used to read one attribute of a named system parameter
(configuration data).

ReadCfgData

WriteCfgData is used to write one attribute of a named system para-
meter (configuration data).

WriteCfgData

WarmStart is used to restart the controller at run time.WarmStart

This is useful after changing system parameters with the instruction
WriteCfgData.

Functions
There are no RAPID functions for the configuration functionality.

34 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.5.2 RAPID components

2.1.5.3 Configuration functionality example

Configure system parameters
This is an example where the system parameter cal_offset for rob1_1 is read,
increased by 0.2 mm and then written back. To make this change take effect, the
controller is restarted.

VAR num old_offset;

VAR num new_offset;

ReadCfgData "/MOC/MOTOR_CALIB/rob1_1", "cal_offset",old_offset;

new_offset := old_offset + (0.2/1000);

WriteCfgData "/MOC/MOTOR_CALIB/rob1_1", "cal_offset",new_offset;

WarmStart;

Application manual - Controller software IRC5 35
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.5.3 Configuration functionality example

2.1.6 Power failure functionality

2.1.6.1 Overview

Purpose
If the robot was in the middle of a path movement when the power fail occurred,
some extra actions may need to be taken when the robot motion is resumed. The
power failure functionality helps you detect if the power fail occurred during a path
movement.

Note

For more information see the type Signal Safe Level, which belongs to the topic
I/O System, in Technical reference manual - System parameters.

What is included
The power failure functionality includes a function that checks for interrupted path:
PFRestart

36 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.6.1 Overview

2.1.6.2 RAPID components and system parameters

Data types
There are no RAPID data types in the power failure functionality.

Instructions
There are no RAPID instructions in the power failure functionality.

Functions
This is a brief description of each function in the power failure functionality. For
more information, see the respective function in Technical referencemanual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

PFRestart (Power Failure Restart) is used to check if the path was inter-
rupted at power failure. If so it might be necessary to make some specific
actions. The function checks the path on current level, base level or on in-
terrupt level.

PFRestart

System parameters
There are no system parameters in the power failure functionality. However,
regardless of whether you have any options installed, you can use the parameter
Store signal at power fail.
For more information, see Technical reference manual - System parameters.

Application manual - Controller software IRC5 37
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.6.2 RAPID components and system parameters

2.1.6.3 Power failure functionality example

Test for interrupted path
When resuming work after a power failure, this example tests if the power failure
occurred during a path (i.e. when the robot was moving).

!Test if path was interrupted

IF PFRestart() = TRUE THEN

SetDO do5,1;

ELSE

SetDO do5,0;

ENDIF

38 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.6.3 Power failure functionality example

2.1.7 Process support functionality

2.1.7.1 Overview

Purpose
Process support functionality provides some RAPID instructions that can be useful
when creating process applications. Examples of its use are:

• Analog output signals, used in continuous process application, can be set
to be proportional to the robot TCP speed.

• A continuous process application that is stopped with program stop or
emergency stop can be continued from where it stopped.

What is included
The process support functionality includes:

• The data type restartdata.
• Instruction for setting analog output signal: TriggSpeed.
• Instructions used in connection with restart: TriggStopProc and

StepBwdPath.

Limitations
The instruction TriggSpeed can only be used if you have the base functionality
Fixed Position Events.

Application manual - Controller software IRC5 39
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.1 Overview

2.1.7.2 RAPID components

Data types
This is a brief description of each data type used for the process support
functionality. For more information, see the respective data type in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionData type

restartdata can contain the pre- and post-values of specified I/O sig-
nals (process signals) at the stop sequence of the robot movements.

restartdata

restartdata, together with the instruction TriggStopProc is used to
preserve data for the restart after program stop or emergency stop of
self-developed process instructions.

Instructions
This is a brief description of each instruction used for the process support
functionality. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

TriggSpeed is used to define the setting of an analog output to a value
proportional to the TCP speed.

TriggSpeed

TriggSpeed can only be used together with the option Fixed Position
Events.

TriggStopProc is used to store the pre- and post-values of all used
process signals.

TriggStopProc

TriggStopProc and the data type restartdata are used to preserve
data for the restart after program stop or emergency stop of self-de-
veloped process instructions.

StepBwdPath is used to move the TCP backwards on the robot path
from a RESTART event routine.

StepBwdPath

Functions
There are no RAPID functions for the process support functionality.

40 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.2 RAPID components

2.1.7.3 Process support functionality examples

Signal proportional to speed
In this example, the analog output signal that controls the amount of glue is set to
be proportional to the speed.
Any speed dip by the robot is time compensated in such a way that the analog
output signal glue_ao is affected 0.04 s before the TCP speed dip occurs. If
overflow of the calculated logical analog output value in glue_ao, the digital output
signal glue_err is set.

VAR triggdata glueflow;

!The glue flow is set to scale value 0.8 0.05 s before point p1

TriggSpeed glueflow, 0, 0.05, glue_ao, 0.8 \DipLag=:0.04,
\ErrDO:=glue_err;

TriggL p1, v500, glueflow, z50, gun1;

!The glue flow is set to scale value 1 10 mm plus 0.05 s

! before point p2

TriggSpeed glueflow, 10, 0.05, glue_ao, 1;

TriggL p2, v500, glueflow, z10, gun1;

!The glue flow ends (scale value 0) 0.05 s before point p3

TriggSpeed glueflow, 0, 0.05, glue_ao, 0;

TriggL p3, v500, glueflow, z50, gun1;

Tip

Note that it is also possible to create self-developed process instructions with
TriggSpeed using the NOSTEPIN routine concept.

Resume signals after stop
In this example, an output signal resumes its value after a program stop or
emergency stop.
The procedure supervise is defined as a POWER ON event routine and
resume_signals as a RESTART event routine.

PERS restartdata myproc_data :=
[FALSE,FALSE,0,0,0,0,0,0,0,0,0,0,0,0,0];

...

PROC myproc()

MoveJ p1, vmax, fine, my_gun;

SetDO do_close_gun, 1;

MoveL p2,v1000,z50,my_gun;

MoveL p3,v1000,fine,my_gun;

SetDO do_close_gun, 0;

ENDPROC

...

PROC supervise()

TriggStopProc myproc_data \DO1:=do_close_gun, do_close_gun;

Continues on next page
Application manual - Controller software IRC5 41
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.3 Process support functionality examples

ENDPROC

PROC resume_signals()

IF myproc_data.preshadowval = 1 THEN

SetDO do_close_gun,1;

ELSE

SetDO do_close_gun,0;

ENDIF

ENDPROC

Move TCP backwards
In this example, the TCP is moved backwards 30 mm in 1 second, along the same
path as before the restart.
The procedure move_backward is defined as a RESTART event routine.

PROC move_backward()

StepBwdPath 30, 1;

ENDPROC

42 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.7.3 Process support functionality examples
Continued

2.1.8 Interrupt functionality

2.1.8.1 Overview

Purpose
The interrupt functionality in Advanced RAPID has some extra features, in addition
to the interrupt features always included in RAPID. For more information on the
basic interrupt functionality, see Technical reference manual - RAPID Overview.
Here are some examples of interrupt applications that Advanced RAPID facilitates:

• Generate an interrupt when a persistent variable change value.
• Generate an interrupt when an error occurs, and find out more about the

error.

What is included
The interrupt functionality in Advanced RAPID includes:

• Data types for error interrupts: trapdata, errdomain, and errtype .
• Instructions for generating interrupts: IPers and IError.
• Instructions for finding out more about an error interrupt: GetTrapData and

ReadErrData.

Application manual - Controller software IRC5 43
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.8.1 Overview

2.1.8.2 RAPID components

Data types
This is a brief description of each data type in the interrupt functionality. For more
information, see the respective data type in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionData type

trapdata represents internal information related to the interrupt that caused
the current trap routine to be executed.

trapdata

errdomain is used to specify an error domain. Depending on the nature
of the error, it is logged in different domains.

errdomain

errtype is used to specify an error type (error, warning, state change).errtype

Instructions
This is a brief description of each instruction in the interrupt functionality. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

IPers (Interrupt Persistent) is used to order an interrupt to be generated
each time the value of a persistent variable is changed.

IPers

IError (Interrupt Errors) is used to order an interrupt to be generated each
time an error occurs.

IError

GetTrapData is used in trap routines generated by the instruction IError.
GetTrapData obtains all information about the interrupt that caused the
trap routine to be executed.

GetTrapData

ReadErrData is used in trap routines generated by the instruction IError.
ReadErrData read the information obtained by GetTrapData.

ReadErrData

ErrRaise is used to create an error in the program and the call the error
handler of the routine.ErrRaise can also be used in the error handler to
propagate the current error to the error handler of the calling routine.

ErrRaise

Functions
There are no RAPID functions for the interrupt functionality.

44 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.8.2 RAPID components

2.1.8.3 Interrupt functionality examples

Interrupt when persistent variable changes
In this example, a trap routine is called when the value of the persistent variable
counter changes.

VAR intnum int1;

PERS num counter := 0;

PROC main()

CONNECT int1 WITH iroutine1;

IPers counter, int1;

...

counter := counter + 1;

...

Idelete int1;

ENDPROC

TRAP iroutine1

TPWrite "Current value of counter = " \Num:=counter;

ENDTRAP

Error interrupt
In this example, a trap routine is called when an error occurs. The trap routine
determines the error domain and the error number and communicates them via
output signals.

VAR intnum err_interrupt;

VAR trapdata err_data;

VAR errdomain err_domain;

VAR num err_number;

VAR errtype err_type;

PROC main()

CONNECT err_interrupt WITH trap_err;

IError COMMON_ERR, TYPE_ERR, err_interrupt;

...

a:=3;

b:=0;

c:=a/b;

...

IDelete err_interrupt;

ENDPROC

TRAP trap_err

GetTrapData err_data;

ReadErrData err_data, err_domain, err_number, err_type;

SetGO go_err1, err_domain;

SetGO go_err2, err_number;

ENDTRAP

Application manual - Controller software IRC5 45
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.8.3 Interrupt functionality examples

2.1.9 User message functionality

2.1.9.1 Overview

Purpose
The user message functionality is used to set up event numbers and facilitate the
handling of event messages and other texts to be presented in the user interface.
Here are some examples of applications:

• Get user messages from a text table file, which simplifies updates and
translations.

• Add system error number to be used as error recovery constants in RAISE
instructions and for test in ERROR handlers.

What is included
The user message functionality includes:

• Text table operating instruction TextTabInstall.
• Text table operating functions: TextTabFreeToUse, TextTabGet, and

TextGet.
• Instruction for error number handling: BookErrNo.

46 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.1 Overview

2.1.9.2 RAPID components

Data types
There are no RAPID data types for the user message functionality.

Instructions
This is a brief description of each instruction used for the user message
functionality. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

BookErrNo is used to define a new RAPID system error number.BookErrNo

TextTabInstall is used to install a text table in the system.TextTabInstall

Functions
This is a brief description of each function used for the user message functionality.
For more information, see the respective function in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

TextTabFreeToUse is used to test whether the text table name is free
to use (not already installed in the system).

TextTabFreeToUse

TextTabGet is used to get the text table number of a user defined text
table.

TextTabGet

TextGet is used to get a text string from the system text tables.TextGet

Application manual - Controller software IRC5 47
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.2 RAPID components

2.1.9.3 User message functionality examples

Book error number
This example shows how to add a new error number.

VAR intnum sig1int;

!Introduce a new error number in a glue system.

!Note: The new error variable must be declared with the

! initial value -1

VAR errnum ERR_GLUEFLOW := -1;

PROC main()

!Book the new RAPID system error number

BookErrNo ERR_GLUEFLOW;

!Raise glue flow error if di1=1

IF di1=1 THEN

RAISE ERR_GLUEFLOW;

ENDIF

ENDPROC

!Error handling

ERROR

IF ERRNO = ERR_GLUEFLOW THEN

ErrWrite "Glue error", "There is a problem with the glue flow";

ENDIF

Error message from text table file
This example shows how to get user messages from a text table file.
There is a text table named text_table_name in a file named
HOME:/language/en/text_file.xml. This table contains error messages in english.
The procedure install_text is executed at event POWER ON. The first time it
is executed, the text table file text_file.xml is installed. The next time it is executed,
the function TextTabFreeToUse returns FALSE and the installation is not repeated.
The table is then used for getting user interface messages.

VAR num text_res_no;

PROC install_text()

!Test if text_table_name is already installed

IF TextTabFreeToUse("text_table_name") THEN

!Install the table from the file HOME:/language/en/text_file.xml

TextTabInstall "HOME:/language/en/text_file.xml";

ENDIF

!Assign the text table number for text_table_name to text_res_no

text_res_no := TextTabGet("text_table_name");

ENDPROC

...

!Write error message with two strings from the table text_res_no

Continues on next page
48 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.3 User message functionality examples

ErrWrite TextGet(text_res_no, 1), TextGet(text_res_no, 2);

Application manual - Controller software IRC5 49
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.3 User message functionality examples

Continued

2.1.9.4 Text table files

Overview
A text table is stored in an XML file (each file can contain one table in one language).
This table can contain any number of text strings with encoding ISO-8859-1.

Explanation of the text table file
This is a description of the XML tags and arguments used in the text table file.

DescriptionArgumentTag

Represents a text table. A file can only contain one instance of
Resource.

Resource

The name of the text table. Used by the RAPID instruction
TextTabGet.

Name

Language code for the language of the text strings.Language
Currently this argument is not being used. The RAPID instruction
TextTabInstall can only handle English texts.

Represents a text string.Text

The number of the text string in the table.Name

The text string to be used.Value

Comments about the text string and its usage.Comment

Example of text table file
<?xml version="1.0" encoding="iso-8859-1" ?>

<Resource Name="text_table_name" Language="en">

<Text Name="1">

<Value>This is a text that is </Value>

<Comment>The first part of my text</Comment>

</Text>

<Text Name="2">

<Value>displayed in the user interface.</Value>

<Comment>The second part of my text</Comment>

</Text>

</Resource>

50 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.9.4 Text table files

2.1.10 RAPID support functionality

2.1.10.1 Overview

Purpose
The RAPID support functionality consists of miscellaneous routines that might be
helpful for an advanced robot programmer.
Here are some examples of applications:

• Activate a new tool, work object or payload.
• Find out what an argument is called outside the current routine.
• Test if the program pointer has been moved during the last program stop.

What is included
RAPID support functionality includes:

• Instruction for activating specified system data: SetSysData.
• Function that gets original data object name: ArgName.
• Function for information about program pointer movement:

IsStopStateEvent.

Application manual - Controller software IRC5 51
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.10.1 Overview

2.1.10.2 RAPID components

Data types
There are no data types for RAPID support functionality.

Instructions
This is a brief description of each instruction used for RAPID support functionality.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

SetSysData activates (or changes the current active) tool, work object,
or payload for the robot.

SetSysData

Functions
This is a brief description of each function used for RAPID support functionality.
For more information, see the respective function in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

ArgName is used to get the name of the original data object for the
current argument or the current data.

ArgName

IsStopStateEvent returns information about the movement of the
program pointer.

IsStopStateEvent

52 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.10.2 RAPID components

2.1.10.3 RAPID support functionality examples

Activate tool
This is an example of how to activate a known tool:

!Activate tool1

SetSysData tool1;

This is an example of how to activate a tool when the name of the tool is only
available in a string:

VAR string tool_string := "tool2";

!Activate the tool specified in tool_string

SetSysData tool0 \ObjectName := tool_string;

Get argument name
In this example, the original name of par1 is fetched. The output will be "Argument
name my_nbr with value 5".

VAR num my_nbr :=5;

proc1 my_nbr;

PROC proc1 (num par1)

VAR string name;

name:=ArgName(par1);

TPWrite "Argument name "+name+" with value " \Num:=par1;

ENDPROC

Test if program pointer has been moved
This example tests if the program pointer was moved during the last program stop.

IF IsStopStateEvent (\PPMoved) = TRUE THEN

TPWrite "The program pointer has been moved.";

ENDIF

Application manual - Controller software IRC5 53
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.1.10.3 RAPID support functionality examples

2.2 Analog Signal Interrupt

2.2.1 Introduction to Analog Signal Interrupt

Purpose
The purpose of Analog Signal Interrupt is to supervise an analog signal and
generate an interrupt when a specified value is reached.
Analog Signal Interrupt is faster, easier to implement, and require less computer
capacity than polling methods.
Here are some examples of applications:

• Save cycle time with better timing (start robot movement exactly when a
signal reach the specified value, instead of waiting for polling).

• Show warning or error messages if a signal value is outside its allowed range.
• Stop the robot if a signal value reaches a dangerous level.

What is included
The RobotWare base functionality Analog Signal Interrupt gives you access to the
instructions:

• ISignalAI

• ISignalAO

Basic approach
This is the general approach for using Analog Signal Interrupt. For a more detailed
example of how this is done, see Code example on page 56.

1 Create a trap routine.
2 Connect the trap routine using the instruction CONNECT.
3 Define the interrupt conditions with the instruction ISignalAI or ISignalAO.

Limitations
Analog signals can only be used if you have an industrial network option (for
example DeviceNet).

54 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.2.1 Introduction to Analog Signal Interrupt

2.2.2 RAPID components

Data types
Analog Signal Interrupt includes no data types.

Instructions
This is a brief description of each instruction in Analog Signal Interrupt. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

Defines the values of an analog input signal, for which an interrupt routine
shall be called.

ISignalAI

An interrupt can be set to occur when the signal value is above or below a
specified value, or inside or outside a specified range. It can also be spe-
cified if the interrupt shall occur once or repeatedly.

Defines the values of an analog output signal, for which an interrupt routine
shall be called.

ISignalAO

An interrupt can be set to occur when the signal value is above or below a
specified value, or inside or outside a specified range. It can also be spe-
cified if the interrupt shall occur once or repeatedly.

Functions
Analog Signal Interrupt includes no RAPID functions.

Application manual - Controller software IRC5 55
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.2.2 RAPID components

2.2.3 Code example

Temperature surveillance
In this example a temperature sensor is connected to the signal ai1.
An interrupt routine with a warning is set to execute every time the temperature
rises 0.5 degrees in the range 120-130 degrees. Another trap routine, stopping the
robot, is set to execute as soon as the temperature rise above 130 degrees.

VAR intnum ai1_warning;

VAR intnum ai1_exeeded;

PROC main()

CONNECT ai1_warning WITH temp_warning;

CONNECT ai1_exeeded WITH temp_exeeded;

ISignalAI ai1, AIO_BETWEEN, 130, 120, 0.5, \DPos, ai1_warning;

ISignalAI \Single, ai1, AIO_ABOVE_HIGH, 130, 120, 0, ai1_exeeded;

...

IDelete ai1_warning;

IDelete ai1_exeeded;

ENDPROC

TRAP temp_warning

TPWrite "Warning: Temperature is "\Num:=ai1;

ENDTRAP

TRAP temp_exeeded

TPWrite "Temperature is too high";

Stop;

ENDTRAP

56 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.2.3 Code example

2.3 Cyclic bool

2.3.1 Cyclically evaluated logical conditions

Purpose
The purpose of cyclically evaluated logical conditions, Cyclic bool, is to allow a
RAPID programmer to connect a logical condition to a persistent boolean variable.
The logical condition will be evaluated every 12 ms and the result will be written
to the connected variable.

What is included
The RobotWare base functionality Cyclic bool includes:

• instructions for setting up Cyclic bool: SetupCyclicBool,
RemoveCyclicBool, RemoveAllCyclicBool

• functions for retrieving the status of Cyclic bool:
GetMaxNumberOfCyclicBool, GetNextCyclicBool,
GetNumberOfCyclicBool.

Basic approach
This is the general approach for using Cyclic bool. For more detailed examples of
how this is done, see Cyclic bool examples on page 60.

1 Declare a persistent boolean variable, for example:
PERS bool cyclicbool1;

2 Connect a logical condition to the variable, for example:
SetupCyclicBool cyclicbool1, doSafetyIsOk = 1;

3 Use the variable when programming, for example:
WHILE cyclicbool1 = 1 DO

! Do what’s only allowed when all safety is ok

...

ENDWHILE

4 Remove connection when no longer useful, for example:
RemoveCyclicBool cyclicbool1;

Restart and reset behavior
The table below describes the functionality of Cyclic bool when the program pointer
is moved or when the controller is restarted.

DescriptionAction

The behavior when the program pointer is set to main is configur-
able, see Configuration on page 58.

Program pointer to
main

This will have no effect.Restart or power fail
All connected Cyclic bool conditions will remain and the evaluation
will be restarted immediately.

This will remove all connected Cyclic bool conditions.Reset RAPID

Reset system

Continues on next page
Application manual - Controller software IRC5 57
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.1 Cyclically evaluated logical conditions

Configuration
The following behavior of the Cyclic bool functionality can be configured:

DescriptionParameter

It is possible to configure if the cyclically evaluated logical conditions
shall be removed or not when setting the program pointer to main.

• On - remove.
• Off - do not remove (default behavior).

RemoveAtPpToMain

It is possible to configure which error mode to use when the evalu-
ation of a Cyclic bool fails.

• SysStopError i - stop RAPID execution and produce an error
log (default behavior).

• Warning - produce a warning log.
• None - do nothing.

ErrorMode

It is possible to configure if a failing Cyclic bool shall be recovered
or not.

• On - try to recover the evaluation of a failing Cyclic bool (de-
fault behavior).

• Off - do not try to recover the evaluation of a Cyclic bool.

RecoveryMode

i Error mode SysStopError can only be combined with RecoveryMode - "On".
For more information, see System parameters on page 63.

Syntax

SetupCyclicBool Flag Cond [\Signal]

Flag shall be of:
• Data type: bool

- Object type: PERS or TASK PERS
Cond shall be a bool expression that may consist of:

• Data types: num, dnum and bool

- Object type: PERS, TASK PERS, or CONST
• Data types: signaldi, signaldo or physical di and do

- Object type: VAR
• Operands: 'NOT', 'AND', 'OR', 'XOR', '=', '(', ')'

\Signal shall be of:
• Object type: signaldo

RemoveCyclicBool Flag

Flag shall be of:
• Data type: bool

- Object type: PERS or TASK PERS

Limitations
• Records and arrays are not allowed in the logical condition.
• A maximum of 60 conditions can be connected at the same time.

Continues on next page
58 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.1 Cyclically evaluated logical conditions
Continued

• Any PERS num or dnum, CONST num or dnum or literal num or dnum used in a
condition must be of integer type. If using any decimal value this will cause
a fatal error.

Application manual - Controller software IRC5 59
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.1 Cyclically evaluated logical conditions

Continued

2.3.2 Cyclic bool examples

Using digital input and output signals
! Wait until all signals are set

PERS bool cyclicbool1 := FALSE;

PROC main()

SetupCyclicBool cyclicbool1, di1=1 AND do2=1;

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Using bool variables
! Wait until all flags are TRUE

PERS bool cyclicbool1 := FALSE;

TASK PERS bool flag1 := FALSE;

PERS bool flag2 := FALSE;

PROC main()

SetupCyclicBool cyclicbool1, flag1=TRUE AND flag2=TRUE;

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Using num and dnum variables
! Wait until all conditions are met

PERS bool cyclicbool1 := FALSE;

PERS bool cyclicbool2 := FALSE;

PERS num num1 := 0;

PERS dnum1 := 0;

PROC main()

SetupCyclicBool cyclicbool1, num1=7 OR dnum1=10000000;

SetupCyclicBool cyclicbool2, num1=8 OR dnum1=11000000;

WaitUntil cyclicbool1=TRUE;

...

WaitUntil cyclicbool2=TRUE;

...

! Remove all connections when no longer in use

RemoveAllCyclicBool;

ENDPROC

Continues on next page
60 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.2 Cyclic bool examples

Using alias variables
! Wait until all conditions are met

ALIAS bool aliasBool;

ALIAS num aliasNum;

ALIAS dnum aliasDnum;

PERS bool cyclicbool1 := FALSE;

PERS aliasBool flag1 := FALSE;

PERS aliasNum num1 := 0;

PERS aliasDnum dnum1 := 0;

PROC main()

SetupCyclicBool cyclicbool1, flag1=TRUE AND (num1=7 OR
dnum1=10000000);

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Using user defined constants for comparison
! Wait until all conditions are met

PERS bool cyclicbool1;

PERS bool flag1 := FALSE;

PERS num num1 := 0;

PERS dnum dnum1 := 0;

CONST bool MYTRUE := TRUE;

CONST num NUMLIMIT := 10;

CONST dnum DNUMLIMIT := 10000000;

PROC main()

SetupCyclicBool cyclicbool1, flag1=MYTRUE AND num1=NUMLIMIT AND
dnum1=DNUMLIMIT;

WaitUntil cyclicbool1=TRUE;

! All is ok

...

! Remove connection when no longer in use

RemoveCyclicBool cyclicbool1;

ENDPROC

Continues on next page
Application manual - Controller software IRC5 61
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.2 Cyclic bool examples

Continued

Handing over arguments by reference
If the instruction SetupCyclicBool is used inside a called procedure, it is possible
to hand over conditions as arguments to that procedure.
Using conditions passed by reference works only for SetupCyclicBool. Conditions
passed by reference has the same restrictions as conditions for SetupCyclicBool.
This functionality works regardless if the modules are Nostepin or has any other
module attributes.

MODULE MainModule

CONST robtarget p10 := [[600,500,225.3], [1,0,0,0], [1,1,0,0],
[11,12.3,9E9,9E9,9E9,9E9]];

PERS bool m1;

PERS bool Flag2 := FALSE;

PROC main()

! The Expression (di_1 = 1) OR Flag2 = TRUE shall be

! used by SetupCyclicBool

my_routine (di_1 = 1) OR Flag2 = TRUE;

ENDPROC

PROC my_routine(bool X)

! It is possible to pass arguments between several procedures

MySetCyclicBool X;

ENDPROC

PROC MySetCyclicBool (bool Y)

RemoveCyclicBool m1;

! Only SetupCyclicBool can pass arguments

SetupCyclicBool m1, Y;

! If conditions passed by reference shall be used by any other

! instruction, the condition must be setup with SetupCyclicBool

! before it can be used.

WaitUntil m1;

MoveL p10, v1000, z30, tool2;

ENDPROC

ENDMODULE

62 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.2 Cyclic bool examples
Continued

2.3.3 System parameters

About the system parameters
This is a brief description of the system parameters used by Cyclic bool. For more
information about the parameters, see Technical reference manual - System
parameters.

Type Cyclic bool settings
The system parameters used by Cyclic bool belong to the type Cyclic bool settings
in topic Controller.

DescriptionParameter

There can be only one instance of each allowed value, that
is a maximum of three instances in the system. All three in-
stances will be installed in the system (default) and cannot
be removed.

• RemoveAtPpToMain
• ErrorMode
• RecoveryMode

Name

The action value RemoveAtPpToMain is used to configure
if a connected Cyclic bool shall be removed or not when
setting the program pointer to Main.

RemoveAtPpToMain

The action value ErrorMode is used to configure which error
mode to use when evaluation fails.

ErrorMode

The action value RecoveryMode is used to configure which
recovery mode to use when evaluation fails.

RecoveryMode

Application manual - Controller software IRC5 63
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.3 System parameters

2.3.4 RAPID components

About the RAPID components
This is an overview of all RAPID instructions, functions, and data types in Cyclic
bool.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types

Instructions

DescriptionInstruction

SetupCyclicBool connects a logical condition to a boolean
variable.

SetupCyclicBool

RemoveCyclicBool removes a specific connected logical con-
dition.

RemoveCyclicBool

RemoveAllCyclicBool removes all connected logical condi-
tions.

RemoveAllCyclicBool

Functions

DescriptionFunction

GetMaxNumberOfCyclicBool retrieves the maximum
number of cyclically evaluated logical condition that can
be connected at the same time.

GetMaxNumberOfCyclicBool

GetNextCyclicBool retrieves the name of a connected
cyclically evaluated logical condition.

GetNextCyclicBool

GetNumberOfCyclicBool retrieves the number of a
connected cyclically evaluated logical condition.

GetNumberOfCyclicBool

IsCyclicBool is used to test if a persistent boolean is
a Cyclic bool or not, i.e. if a logical condition has been
connected to the persistent boolean variable with the
instruction SetupCyclicBool.

IsCyclicBool

Data types
Cyclic bool includes no data types.

64 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.3.4 RAPID components

2.4 Electronically Linked Motors

2.4.1 Overview

Description
Electronically Linked Motors makes a master/follower configuration of motors (for
example two additional axes). The follower axis will continuously follow the master
axis in terms of position, velocity, and acceleration.
For stiff mechanical connection between the master and followers, the torque
follower function can be used. Instead of regulating to exactly the same position
for the master and follower, the torque is distributed between the axes. A small
position error between master and follower will occur depending on backlash and
mechanical misalignment.

Purpose
The primary purpose of Electronically Linked Motors is to replace driving shafts
of gantry machines, but the base functionality can be used to control any other set
of motors as well.

What is included
The RobotWare base functionality Electronically Linked Motors gives you access
to:

• a service routine for defining linked motor groups and trimming the axis
positions

• system parameters used to configure a follower axis

Basic approach
This is the general approach for setting up Electronically Linked Motors. For a
more detailed description of how this is done, see the respective section.

1 Configure the additional axes as a mechanical unit. See Application
manual - Additional axes and standalone controller.

2 Configure tolerance limits in the system parameters, in the types Linked M
Process, Process, and Joint.

3 Restart the controller for the changes to take effect.
4 Set values to data variables, defining the linked motor group and connecting

follower and master axes.
5 Use the service routine to trim positions or reset follower after position error.

Limitations
There can be up to 5 follower axes. The follower axes can be configured to follow
one master each, or several followers can follow one master, but the total number
of follower axes cannot be more than 5.
The follower axis cannot be an ABB robot (IRB robot). The master axis can be
either an additional axis or a robot axis.

Continues on next page
Application manual - Controller software IRC5 65
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.1 Overview

The torque follower function can only be used if the follower axis is connected to
the same drive module as the master axis.
Using the torque follower functionality might reduce the number of follower axes
depending on the number of axes that are available in the drive module where
master axis is configured.
The RAPID instruction IndReset (Independent Reset) cannot be used in
combination with Electronically Linked Motors.

66 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.1 Overview
Continued

2.4.2 Configuration

2.4.2.1 System parameters

About the system parameters
This is a brief description of each parameter used for the option Electronically
Linked Motors. For more information, see the respective parameter in Technical
reference manual - System parameters.

Joint
These parameters belong to the topic Motion and the type Joint.

DescriptionParameter

Specifies which master axis this axis shall follow. Refers to the parameter
Name in the type Joint. Robot axes are referred to as rob1 followed by
underscore and the axis number (for example rob1_6).

Follower to Joint

Id name of the process that is called. Refers to the parameter Name in
the type Process.

Use Process

A flag that locks the axis so it is not used in the path interpolation.Lock Joint in Ipol
This parameter must be set to TRUE when the axis is electronically linked
to another axis.

Process
These parameters belong to the topic Motion and the type Process.

DescriptionParameter

Id name of the process.Name

Id name of electronically linked motor process. Refers to the parameter
Name in the type Linked M Process.

Use Linked Motor
Process

Linked M Process
These parameters belong to the topic Motion and the type Linked M Process.

DescriptionParameter

Id name for the linked motor process.Name

Time delay from control on until the follower starts to follow the
master.

Offset Adjust Delay
Time

This can be used to give the master time to stabilize before the
follower starts following.

The maximum allowed difference in distance (in radians or meters)
between master and follower.

Max Follower Offset

If Max Follower Offset is exceeded, emergency stop is activated.

The maximum allowed difference in speed (in rad/s or m/s) between
master and follower.

Max Offset Speed

If Max Offset Speed is exceeded, emergency stop is activated.

Defines how large part of the Max Offset Speed that can be used
to compensate for position error.

Offset Speed Ratio

Continues on next page
Application manual - Controller software IRC5 67
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.2.1 System parameters

DescriptionParameter

Time for acceleration up to Max Offset Speed.Ramp Time
The proportion constant for position regulation is ramped from zero
up to its final value (Master Follower kp) during Ramp Time.

The proportion constant for position regulation. Determines how
fast the position error is compensated.

Master Follower kp

Set to True if the follower and master should share torque instead
of regulating on exact position.

Torque follower

This can only be used if the follower axis is connected to the same
drive module as the master axis.

The ratio (of the total torque) that should be applied to the follower
(for example 0.3 result in 30% on follower and 70% on master). If
drive and motors are equal this is normally set to 0.5.

Torque distribution

This value is set to reduce the accuracy of the follower position
loop. This is needed in cases where the mechanical structure gives
high torques between the motors due to large position mismatch
in a stiff mechanical connection etc.

• 0: accuracy reduction not active
• 10-30 typical values

Follower axis pos. acc.
reduction

68 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.2.1 System parameters
Continued

2.4.2.2 Configuration example

About this example
This is an example of how to configure the additional axis M8DM1 to be a follower
to the axis M7DM1 and axis M9DM1 to be a follower to robot axis 6.

Joint

Lock Joint in IpolUse ProcessFollower to JointName

M7DM1

TrueELM_1M7DM1M8DM1

TrueELM_2rob1_6M9DM1

Process

Use Linked Motor ProcessName

Linked_m_1ELM_1

Linked_m_2ELM_2

Linked M Process

Master Fol-
lower kp

Ramp
Time

Offset
Speed Ra-
tio

MaxOffset
Speed

Max Follow-
er Offset

Offset Adjust
Delay Time

Name

0.0510.330.050.050.2Linked_m_1

0.081.50.40.10.10.1Linked_m_2

Application manual - Controller software IRC5 69
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.2.2 Configuration example

2.4.3 Managing a follower axis

2.4.3.1 Using the service routine for a follower axis

About the service routine
When the follower axis is configured as a mechanical unit and connected to a
master axis, the service routine can be used to:

• calibrate the follower axis
• reset follower after a position error
• tune a torque follower axis, see Tuning a torque follower on page 75.

Copy service routine file to HOME
Copy the file linked_m.sys from directory:
hd0a\<active system>\PRODUCTS\RobotWare_6.0x.xxxx\utility\LinkedMotors
to the HOME directory of the active system.

Load cfg files
Load the configuration files LINKED_M_MMC.cfg and LINKED_M_SYS.cfg. These
are located in the directory:
...\utility\LinkedMotors.
Loading configuration files can be done with RobotStudio or FlexPendant. How to
do this is described in:

Description of loading cfg filesTool

Section Loading a configuration file in Operating manual - RobotStudio.RobotStudio

Section Loading system parameters in Operating manual - IRC5 Integ-
rator's guide.

FlexPendant

Restart the controller after loading the configuration files.

Data variables
When the service routine starts, it will read values from system parameters and
set the values for a set of data variables used by the service routine. These variables
only need to be set manually if something goes wrong, see Data setup on page78.

Start service routine

Note

The controller must be in manual or auto mode to run this service routine.

ActionStep

In the program view, tap Debug and select Call Routine....1

Select Linked_m and tap Go to.2

Press and hold the enabling device.3

Press the RUN button to start the service routine.4

Continues on next page
70 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.3.1 Using the service routine for a follower axis

ActionStep

Tap Menu 1.
The follower axes that are set up in the system are shown in the task bar.

5

Tap the follower axis you want to use the service routine for.
The main menu of the service program is now shown.

6

Menu buttons

DescriptionButton

Automatically moves the follower axis to the position corresponding to the
master axis, see Reset follower automatically on page 74.

AUTO

Stops the movement of the follower axis. Can be used when jogging or using
AUTO and the movement must be stopped immediately.

STOP

Manual stepwise movement of the follower axis, see Jog follower axis on page72.JOG
If the follower axis is synchronized with the master axis, it will resume its position
when you tap AUTO or when you exit the service program.

Used to suspend the synchronization between follower axis and master axis,
see Unsynchronize on page 72.

UNSYNC

Show some help for how to use the service program. The button Next shows
the next help subject.

HELP

Application manual - Controller software IRC5 71
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.3.1 Using the service routine for a follower axis

Continued

2.4.3.2 Calibrate follower axis position

Overview
Before the follower axis can follow the master axis, you must define the calibration
positions for both master and follower.

Master axis

calibrate position

Desired

follower

position

Follower

position

en0400000963

This calibration is done by following the procedures below:
1 Jog the master axis to its calibration position.
2 Unsynchronize the follower and master axes. SeeUnsynchronize on page72.
3 Jog the follower to the desired position. See Jog follower axis on page 72.
4 Fine calibrate follower axis. See Fine calibrate on page 73.

Unsynchronize

ActionStep

In the main menu of the service routine, tap UNSYNC.1

Confirm that you want to unsynchronize the axes by tapping YES.2

Restart the controller when an information text tells you to do it.
After the restart the follower axis is no longer synchronized with the master axis.

3

Jog follower axis

ActionStep

In the main menu of the service program, tap JOG.1

Select the speed with which the follower axis should move when you jog it.2

Select the step size with which the follower axis should move for each step you
jog it.

3

Tap on Positive or Negative, depending on in which direction you want to move
the follower axis.

4

Jog the follower axis until it is exactly in the calibration position (the position that
corresponds to the master axis calibration position).

Continues on next page
72 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.3.2 Calibrate follower axis position

Fine calibrate

ActionStep

In the ABB menu, select Calibration.1

Select the mechanical unit that the follower axis belongs to.2

Tap the button Calib. Parameters.3

Tap Fine Calibration....4

In the warning dialog that appears, tap Yes.5

Select the axis that is used as follower axis and tap Calibrate.6

In the warning dialog that appears, tap Calibrate.
The follower axis is now calibrated. As soon as the follower is calibrated, it is also
synchronized with the master again.

7

Application manual - Controller software IRC5 73
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.3.2 Calibrate follower axis position

Continued

2.4.3.3 Reset follower axis

Overview
If the follower offset exceeds its tolerance limits (configured with the system
parameter Max follower offset), the service routine must be used to move the
follower back within the tolerance limits. This can be done automatically in the
service routine if the follower is within the AUTO range. Otherwise the follower
must be manually jogged.
The range where AUTO can be used is determined by the system parameter Max
Follower Offset multiplied with the data variable offset_ratio.

Master axis

position

Desired

follower

position

Range where follower

automatically follow master

Range where AUTO in service program can be used

Max Follower

 Offset

Max Follower Offset * offset_ratio

en0400000962

Reset follower automatically

ActionStep

In the main menu of the service routine, tap AUTO.1

Select the speed with which the follower axis should move to its desired position.2

Reset follower by manual jogging

ActionStep

In the main menu of the service routine, tap JOG.1

Select the speed with which the follower axis should move when you jog it.2

Select the step size with which the follower axis should move for each step you
jog it.

3

Tap on Positive or Negative, depending on which direction you want to move the
follower axis.

4

Jog the follower until it is within the tolerance of Max Follower Offset (or use AUTO
when you are close enough).

74 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.3.3 Reset follower axis

2.4.4 Tuning a torque follower

2.4.4.1 Torque follower descriptions

About torque followers
The follower axis can be setup so the torque is shared between the master and
the follower. This is only allowed if the follower axis is connected to the same drive
module as the master axis.
Below is a simplified picture of the control loop of the follower axis.

en0900000679

Torque distribution
The sharing of torque will be done on the integral part of the control loops. By
setting torque distribution to 0.5, the master and follower will have equal part of
the integral part of the total torque. A value of 0.3 will make the follower axis have
30% of the integral torque and the master axis 70%.

Position accuracy reduction
If the mechanical structure is very stiff and has a mechanical misalignment or a
large backlash, the proportional part will be a major part of the total torque. If this
becomes a problem with too high torque difference between the master and the
follower the position accuracy reduction function (PAR in the illustration) can be
used. This will make the follower axis less accurate when it comes in to a position.
This will make the follower act more like a true torque follower.
Test signals that can be useful to check the behavior of this is:

Test signal numberTest signal

37Integral part of torque

36Proportional part of torque

9Total torque ref (also including any feed forward torque)

Application manual - Controller software IRC5 75
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.4.1 Torque follower descriptions

2.4.4.2 Using the service routine to tune a torque follower

About the service routine for torque follower
The service routine Linked_M can be used to find suitable values of some
parameters for torque follower configuration. When the values are found, the system
parameters are updated and a new fine calibration is done. After that, there is no
need for any tuning of the torque follower.

Opening the tune torque follower menu

IllustrationAction

Start the service routine (as described
by the first steps in Start service routine
on page 70).

1

Tap Menu 2.2

Tap on the name of the follower axis to
tune.

3

Use the tune torque follower menu as
described below.

4

Tuning the torque distribution
Use this procedure to change the distribution of torque between the master and
the follower axis.

IllustrationAction

Tap Torque distribution.1

Type a number (between 0 and 1) for the
follower’s share of the total torque.

2

For example, 0.3 will result in 30% of the
torque on the follower and 70% on the
master.

To update the system parameters using
the new value, tap Store to cfg.

3

If not saved to cfg, the new value will be
used until the robot controller is restar-
ted, but the value will be lost at restart.

Tuning the position accuracy reduction
Use this procedure to set the position accuracy reduction of the torque follower
axis.

IllustrationAction

Tap Position accuracy reduction.1

Type a number for reduced position ac-
curacy.

2

0 means no position accuracy reduction.
10 -30 is typically used for a torque fol-
lower to reduce the torque tension
between the master and the follower.

Continues on next page
76 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.4.2 Using the service routine to tune a torque follower

IllustrationAction

To update the system parameters using
the new value, tap Store to cfg.

3

If not saved to cfg, the new value will be
used until the robot controller is restar-
ted, but the value will be lost at restart.

Tuning the temporary position delta
Use this procedure to tune the position delta of the torque follower axis. This delta
value is then used to adjust the fine calibration of the follower axis.

IllustrationAction

Tap Temp. position delta.1

Type a number (degrees on motor side)
that will be added to the position refer-
ence for the follower axis.

2

Test which value results in the lowest
torque tension and make a fine calibra-
tion of the master axis. This will update
the follower axis with the current position
delta.

3

Application manual - Controller software IRC5 77
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.4.2 Using the service routine to tune a torque follower

Continued

2.4.5 Data setup

2.4.5.1 Set up data for the service routine

Overview
At start of the service routine for Electronically Linked Motors, some data variables
are read from the linked motor configuration. These variables are used by the
service routine. If they are not read correctly, the variables need to be edited in
the service routine.

Data descriptions

DescriptionData variable

A name for the follower axis that will be displayed on the FlexPendant.l_f_axis_name
String array with 5 elements, one for each follower axis. If you only have
one linked motor, use only the first element.

The name of the mechanical unit for the follower axis. Refers to the system
parameter Name in the type Mechanical Unit.

l_f_mecunt_n

String array with 5 elements, one for each follower axis. If you only have
one linked motor, use only the first element.

Defines which axis in the mechanical unit (l_f_mecunt_n) is the follower
axis.

l_f_axis_no

Num array with 5 elements, one for each follower axis. If you only have
one linked motor, use only the first element.

The name of the mechanical unit for the master axis. Refers to the system
parameter Name in the type Mechanical Unit.

l_m_mecunt_n

String array with 5 elements, one for each master axis. If you only have
one linked motor, use only the first element.

Defines which axis in the mechanical unit (l_m_mecunt_n) is the master
axis.

l_m_axis_no

Num array with 5 elements, one for each master axis. If you only have
one linked motor, use only the first element.

Defines the range where the AUTO function in the service program reset
the follower axis. offset_ratio defines this range as a multiple of the
range where the follower automatically follow the master (defined with
the parameter Max Follow Offset).

offset_ratio

If the follower has a position error that is larger than Max Follower Offset
* offset_ratio, the follower must be reset manually. For more informa-
tion, see Reset follower axis on page 74.

Defines the speed of the follower axis when controlled by the service
program. The values are given as a part of the maximum allowed manual
speed (that is, the value 0.5 means half the max manual speed).

speed_ratio

Num array with 20 elements. Elements 1-5 define the speed "very slow"
for each follower axis. Elements 6-10 define "slow", elements 11-15 define
"normal" and elements 16-20 define "fast". If you only have one linked
motor, use only elements 1, 6, 11 and 16.

Continues on next page
78 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.5.1 Set up data for the service routine

DescriptionData variable

Defines the distance the follower axis will move for each tap on Positive
or Negativewhen jogging the follower axis from the service program. The
values are given in degrees or meters, depending on if the follower axis
is circular or linear.

displacement

Num array with 20 elements. Elements 1-5 define the displacement "very
short" for each follower axis. Elements 6-10 define "short", elements 11-
15 define "normal" and elements 16-20 define "long". If you only have one
linked motor, use only elements 1, 6, 11 and 16.

Edit data variables
This is a description of how to set values for the data variables from the
FlexPendant.

ActionStep

In the ABB menu, select Program Data.1

Select string and tap Show Data.2

Select l_f_axis_name and tap Edit Value.3

Tap the first element.4

Tap the line to edit it.5

Enter the name you want to give your first follower axis.6

If you have more than one follower axis, repeat step 4-6 for the next elements.7

Repeat step 3-7 for l_f_mecunt_n and l_m_mecunt_n.8

In the Program Data menu, select num and repeat step 3-7 for l_f_axis_no,
l_m_axis_no, offset_ratio, speed_ratio and displacement.

9

Application manual - Controller software IRC5 79
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.5.1 Set up data for the service routine

Continued

2.4.5.2 Example of data setup

About this example
This is an example of how to set up the data variables for two follower axis. The
first follower axis is M8C1B1, which is a follower to the additional axis M7C1B1.
The second follower axis is M9C1B1, which is a follower to robot axis 6.

l_f_axis_name

Element and value in l_f_axis_nameRepresented axis

{1}: "follow_external"Follower 1

{2}: "follow_axis6"Follower 2

{3}: ""Follower 3

{4}: ""Follower 4

{5}: ""Follower 5

l_f_mecunt_n

Element and value in l_f_mecunt_nRepresented axis

{1}: "M8DM1"Follower 1

{2}: "M9DM1"Follower 2

{3}: ""Follower 3

{4}: ""Follower 4

{5}: ""Follower 5

l_f_axis_no

Element and value in l_f_axis_noRepresented axis

{1}: 1Follower 1

{2}: 1Follower 2

{3}: 0Follower 3

{4}: 0Follower 4

{5}: 0Follower 5

l_m_mecunt_n

Element and value in l_m_mecunt_nRepresented axis

{1}: "M7DM1"Master 1

{2}: "rob1"Master 2

{3}: ""Master 3

{4}: ""Master 4

{5}: ""Master 5

Continues on next page
80 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.5.2 Example of data setup

l_m_axis_no

Element and value in l_m_axis_noRepresented axis

{1}: 1Master 1

{2}: 6Master 2

{3}: 0Master 3

{4}: 0Master 4

{5}: 0Master 5

offset_ratio

Element and value in offset_ratioRepresented axis

{1}: 10Follower 1

{2}: 15Follower 2

{3}: 0Follower 3

{4}: 0Follower 4

{5}: 0Follower 5

speed_ratio

fastnormalslowvery slowRepresented axis

{16}: 1{11}: 0.2{6}: 0.05{1}: 0.01Follower 1

{17}: 1{12}: 0.2{7}: 0.05{2}: 0.01Follower 2

{18}: 0{13}: 0{8}: 0{3}: 0Follower 3

{19}: 0{14}: 0{9}: 0{4}: 0Follower 4

{20}: 0{15}: 0{10}: 0{5}: 0Follower 5

displacement

longnormalshortvery shortRepresented axis

{16}: 0.1{11}: 0.02{6}: 0.005{1}: 0.001Follower 1

{17}: 10{12}: 1{7}: 0.1{2}: 0.01Follower 2

{18}: 0{13}: 0{8}: 0{3}: 0Follower 3

{19}: 0{14}: 0{9}: 0{4}: 0Follower 4

{20}: 0{15}: 0{10}: 0{5}: 0Follower 5

Application manual - Controller software IRC5 81
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.4.5.2 Example of data setup

Continued

2.5 Fixed Position Events

2.5.1 Overview

Purpose
The purpose of Fixed Position Events is to make sure a program routine is executed
when the position of the TCP is well defined.
If a move instruction is called with the zone argument set to fine, the next routine
is always executed once the TCP has reached its target. If a move instruction is
called with the zone argument set to a distance (for example z20), the next routine
may be executed before the TCP is even close to the target. This is because there
is always a delay between the execution of RAPID instructions and the robot
movements.
Calling the move instruction with zone set to fine will slow down the movements.
With Fixed Position Events, a routine can be executed when the TCP is at a
specified position anywhere on the TCP path without slowing down the movement.

What is included
The RobotWare base functionality Fixed Position Events gives you access to:

• instructions used to define a position event
• instructions for moving the robot and executing the position event at the

same time
• instructions for moving the robot and calling a procedure while passing the

target, without first defining a position event

Basic approach
Fixed Position Events can either be used with one simplified instruction calling a
procedure or it can be set up following these general steps. For more detailed
examples of how this is done, see Code examples on page 86.

1 Declare the position event.
2 Define the position event:

• when it shall occur, compared to the target position
• what it shall do

3 Call a move instruction that uses the position event. When the TCP is as
close to the target as defined, the event will occur.

82 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.5.1 Overview

2.5.2 RAPID components and system parameters

Data types
This is a brief description of each data type in Fixed Position Events. For more
information, see the respective data type in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionData type

triggdata is used to store data about a position event.triggdata

A position event can take the form of setting an output signal or run-
ning an interrupt routine at a specific position along the movement
path of the robot.
triggdata also contains information on when the action shall occur,
for example when the TCP is at a defined distance from the target.
triggdata is a non-value data type.

triggios is used to store data about a position event used by the
instruction TriggLIOs.

triggios

triggios sets the value of an output signal using a num value.

triggiosdnum is used to store data about a position event used by
the instruction TriggLIOs.

triggiosdnum

triggiosdnum sets the value of an output signal using a dnum value.

triggstrgo is used to store data about a position event used by the
instruction TriggLIOs.

triggstrgo

triggstrgo sets the value of an output signal using a stringdig
value (string containing a number).

Instructions
This is a brief description of each instruction in Fixed Position Events. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

MoveLSync is a linear move instruction that calls a procedure in the
middle of the corner path.

MoveLSync

MoveCSync is a circular move instruction that calls a procedure in
the middle of the corner path.

MoveCSync

MoveJSync is a joint move instruction that calls a procedure in the
middle of the corner path.

MoveJSync

TriggIO defines the setting of an output signal and when to set that
signal. The definition is stored in a variable of type triggdata.

TriggIO

TriggIO can define the setting of the signal to occur at a certain
distance (in mm) from the target, or a certain time from the target. It
is also possible to set the signal at a defined distance or time from
the starting position.
By setting the distance to 0 (zero), the signal will be set when the TCP
is as close to the target as it gets (the middle of the corner path).

TriggEquipworks like TriggIO, with the difference that TriggEquip
can compensate for the internal delay of the external equipment.

TriggEquip

For example, the signal to a glue gun must be set a short time before
the glue is pressed out and the gluing begins.

Continues on next page
Application manual - Controller software IRC5 83
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.5.2 RAPID components and system parameters

DescriptionInstruction

TriggInt defines when to run an interrupt routine. The definition is
stored in a variable of type triggdata.

TriggInt

TriggInt defines at what distance (in mm) from the target (or from
the starting position) the interrupt routine shall be called. By setting
the distance to 0 (zero), the interrupt will occur when the TCP is as
close to the target as it gets (the middle of the corner path).

TriggCheckIO defines a test of an input or output signal, and when
to perform that test. The definition is stored in a variable of type
triggdata.

TriggCheckIO

TriggCheckIO defines a test, comparing an input or output signal
with a value. If the test fails, an interrupt routine is called. As an option
the robot movement can be stopped when the interrupt occurs.
TriggCheckIO can define the test to occur at a certain distance (in
mm) from the target, or a certain time from the target. It is also possible
to perform the test at a defined distance or time from the starting po-
sition.
By setting the distance to 0 (zero), the interrupt routine will be called
when the TCP is as close to the target as it gets (the middle of the
corner path).

TriggRampAO defines the ramping up or down of an analog output
signal and when this ramping is performed. The definition is stored
in a variable of type triggdata.

TriggRampAO

TriggRampIO defines where the ramping of the signal is to start and
the length of the ramping.

TriggL is a move instruction, similar to MoveL. In addition to the
movement the TriggL instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggL

TriggL executes up to 8 position events stored as triggdata. These
must be defined before calling TriggL.

TriggC is a move instruction, similar to MoveC. In addition to the
movement the TriggC instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggC

TriggC executes up to 8 position events stored as triggdata. These
must be defined before calling TriggC.

TriggJ is a move instruction, similar to MoveJ. In addition to the
movement the TriggJ instruction can set output signals, run interrupt
routines and check input or output signals at fixed positions.

TriggJ

TriggJ executes up to 8 position events stored as triggdata. These
must be defined before calling TriggJ.

TriggLIOs is a move instruction, similar to MoveL. In addition to the
movement the TriggLIOs instruction can set output signals at fixed
positions.

TriggLIOs

TriggLIOs is similar to the combination of TriggEquip and TriggL.
The difference is that TriggLIOs can handle up to 50 position events
stored as an array of datatype triggios, triggiosdnum, or
triggstrgo.

Functions
Fixed Position Events includes no RAPID functions.

Continues on next page
84 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.5.2 RAPID components and system parameters
Continued

System parameters
This is a brief description of each parameter in Fixed Position Events. For more
information, see the respective parameter in Technical reference manual - System
parameters.

DescriptionParameter

TriggEquip takes advantage of the delay between the RAPID exe-
cution and the robot movement, which is about 70 ms. If the delay of
the equipment is longer than 70 ms, then the delay of the robot
movement can be increased by configuring Event preset time.

Event Preset Time

Event preset time belongs to the type Motion System in the topic
Motion.

Application manual - Controller software IRC5 85
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.5.2 RAPID components and system parameters

Continued

2.5.3 Code examples

Example without Fixed Position Events
Without the use of Fixed Position Events, the code can look like this:

MoveJ p1, vmax, fine, tool1;

MoveL p2, v1000, z20, tool1;

SetDO do1, 1;

MoveL p3, v1000, fine, tool1;

Result
The code specifies that the TCP should reach p2 before setting do1. Because the
robot path is delayed compared to instruction execution, do1 is set when the TCP
is at the position marked with X (see illustration).

xx0300000151

Example with TriggIO and TriggL instructions
Setting the output signal 30 mm from the target can be arranged by defining the
position event and then moving the robot while the system is executing the position
event.

VAR triggdata do_set;

!Define that do1 shall be set when 30 mm from target

TriggIO do_set, 30 \DOp:=do1, 1;

MoveJ p1, vmax, fine, tool1;

!Move to p2 and let system execute do_set

TriggL p2, v1000, do_set, z20, tool1;

MoveL p3, v1000, fine, tool1;

Continues on next page
86 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.5.3 Code examples

Result
The signal do1 will be set when the TCP is 30 mm from p2. do1 is set when the
TCP is at the position marked with X (see illustration).

xx0300000158

Example with MoveLSync instruction
Calling a procedure when the robot path is as close to the target as possible can
be done with one instruction call.

MoveJ p1, vmax, fine, tool1;

!Move to p2 while calling a procedure

MoveLSync p2, v1000, z20, tool1, "proc1";

MoveL p3, v1000, fine, tool1;

Result
The procedure will be called when the TCP is at the position marked with X (see
illustration).

xx0300000165

Application manual - Controller software IRC5 87
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.5.3 Code examples

Continued

2.6 File and I/O device handling

2.6.1 Introduction to file and I/O device handling

About file and I/O device handling
The RobotWare file and I/O device handling gives the robot programmer control
of files, fieldbuses, and serial channels from the RAPID code. This can, for example,
be useful for:

• Reading from a bar code reader.
• Writing production statistics to a log file or to a printer.
• Transferring data between the robot and a PC.

The functionality for file and I/O device handling can be divided into groups:

DescriptionFunctionality group

Basic communication functionality. Communication
with binary or character based files or I/O devices.

Binary and character based commu-
nication

Data packed in a container. Especially intended for
fieldbus communication.

Raw data communication

Browsing and editing of file structures.File and directory management

88 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.1 Introduction to file and I/O device handling

2.6.2 Binary and character based communication

2.6.2.1 Overview

Purpose
The purpose of binary and character based communication is to:

• store information in a remote memory or on a remote disk
• let the robot communicate with other devices

What is included
To handle binary and character based communication, RobotWare gives you access
to:

• instructions for manipulations of a file or I/O device
• instructions for writing to file or I/O device
• instruction for reading from file or I/O device
• functions for reading from file or I/O device.

Basic approach
This is the general approach for using binary and character based communication.
For a more detailed example of how this is done, see Code examples on page 91.

1 Open a file or I/O device.
2 Read or write to the file or I/O device.
3 Close the file or I/O device.

Limitations
Access to files and I/O devices cannot be performed from different RAPID tasks
simultaneously. Such an access is performed by all instruction in binary and
character based communication, as well as WriteRawBytes and ReadRawBytes.
E.g. if a ReadBin instruction is executed in one task, it must be ready before a
WriteRawBytes can execute in another task.

Application manual - Controller software IRC5 89
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.2.1 Overview

2.6.2.2 RAPID components

Data types
This is a brief description of each data type used for binary and character based
communication. For more information, see the respective data type in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionData type

iodev contains a reference to a file or I/O device. It can be linked to the
physical unit with the instruction Open and then used for reading and
writing.

iodev

Instructions
This is a brief description of each instruction used for binary and character based
communication. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

Open is used to open a file or I/O device for reading or writing.Open

Close is used to close a file or I/O device.Close

Rewind sets the file position to the beginning of the file.Rewind

ClearIOBuff is used to clear the input buffer of a serial channel. All
buffered characters from the input serial channel are discarded.

ClearIOBuff

Write is used to write to a character based file or I/O device.Write

WriteBin is used to write a number of bytes to a binary I/O device or
file.

WriteBin

WriteStrBin is used to write a string to a binary I/O device or file.WriteStrBin

WriteAnyBin is used to write any type of data to a binary I/O device or
file.

WriteAnyBin

ReadAnyBin is used to read any type of data from a binary I/O device
or file.

ReadAnyBin

Functions
This is a brief description of each function used for binary and character based
communication. For more information, see the respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

ReadNum is used to read a number from a character based file or I/O device.ReadNum

ReadStr is used to read a string from a character based file or I/O device.ReadStr

ReadBin is used to read a byte (8 bits) from a file or I/O device. This function
works on both binary and character based files or I/O devices.

ReadBin

ReadStrBin is used to read a string from a binary I/O device or file.ReadStrBin

90 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.2.2 RAPID components

2.6.2.3 Code examples

Communication with character based file
This example shows writing and reading to and from a character based file. The
line "The number is :8" is written to FILE1.DOC. The contents of FILE1.DOC is then
read and the output to the FlexPendant is "The number is :8" followed by "The
number is 8".

PROC write_to_file()

VAR iodev file;

VAR num number:= 8;

Open "HOME:" \File:= "FILE1.DOC", file;

Write file, "The number is :"\Num:=number;

Close file;

ENDPROC

PROC read_from_file()

VAR iodev file;

VAR num number;

VAR string text;

Open "HOME:" \File:= "FILE1.DOC", file \Read;

TPWrite ReadStr(file);

Rewind file;

text := ReadStr(file\Delim:=":");

number := ReadNum(file);

Close file;

TPWrite text \Num:=number;

ENDPROC

Communication with binary file
In this example, the string "Hello", the current robot position and the string "Hi" is
written to the binary file.

PROC write_bin_chan()

VAR iodev file1;

VAR num out_buffer{20};

VAR num input;

VAR robtarget target;

Open "HOME:" \File:= "FILE1.DOC", file1 \Bin;

! Write control character enq

out_buffer{1} := 5;

WriteBin file1, out_buffer, 1;

! Wait for control character ack

input := ReadBin (file1 \Time:= 0.1);

IF input = 6 THEN

! Write "Hello" followed by new line

WriteStrBin file1, "Hello\0A";

Continues on next page
Application manual - Controller software IRC5 91
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.2.3 Code examples

! Write current robot position

target := CRobT(\Tool:= tool1\WObj:= wobj1);

WriteAnyBin file1, target;

! Set start text character (2=start text)

out_buffer{1} := 2;

! Set character "H" (72="H")

out_buffer{2} := 72;

! Set character "i"

out_buffer{3} := StrToByte("i"\Char);

! Set new line character (10=new line)

out_buffer{4} := 10;

! Set end text character (3=end text)

out_buffer{5} := 3;

! Write the buffer with the line "Hi"

! to the file

WriteBin file1, out_buffer, 5;

ENDIF

Close file1;

ENDPROC

92 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.2.3 Code examples
Continued

2.6.3 Raw data communication

2.6.3.1 Overview

Purpose
The purpose of raw data communication is to pack different type of data into a
container and send it to a file or I/O device, and to read and unpack data. This is
particularly useful when communicating via a fieldbus, such as DeviceNet.

What is included
To handle raw data communication, RobotWare gives you access to:

• instructions used for handling the contents of a rawbytes variable
• instructions for reading and writing raw data
• a function to get the valid data length of a rawbytes variable.

Basic approach
This is the general approach for raw data communication. For a more detailed
example of how this is done, see Write and read rawbytes on page 95.

1 Pack data into a rawbytes variable (data of type num, byte or string).
2 Write the rawbytes variable to a file or I/O device.
3 Read a rawbytes variable from a file or I/O device.
4 Unpack the rawbytes variable to num, byte or string.

Limitations
Device command communication also require the base functionality Device
Command Interface and the option for the industrial network in question.
Access to files and I/O devices cannot be performed from different RAPID tasks
simultaneously. Such an access is performed by all instruction in binary and
character based communication, as well as WriteRawBytes and ReadRawBytes.
For example, if a ReadBin instruction is executed in one task, then it must be ready
before a WriteRawBytes instruction can execute in another task.

Application manual - Controller software IRC5 93
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.1 Overview

2.6.3.2 RAPID components

Data types
This is a brief description of each data type used for raw data communication. For
more information, see the respective data type in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

rawbytes is used as a general data container. It can be filled with any
data of types num, byte, or string. It also stores the length of the
valid data (in bytes).

rawbytes

rawbytes can contain up to 1024 bytes of data. The supported data
formats are listed in the instruction PackRawBytes, in Technical refer-
ence manual - RAPID Instructions, Functions and Data types.

Instructions
This is a brief description of each instruction used for raw data communication.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

ClearRawBytes is used to set all the contents of a rawbytes variable
to 0. The length of the valid data in the rawbytes variable is set to 0.

ClearRawBytes

ClearRawBytes can also be used to clear only the last part of a
rawbytes variable.

PackRawBytes is used to pack the contents of variables of type num,
byte or string into a variable of type rawbytes.

PackRawBytes

UnpackRawBytes is used to unpack the contents of a variable of type
rawbytes to variables of type byte, num or string.

UnpackRawBytes

CopyRawBytes is used to copy all or part of the contents from one
rawbytes variable to another.

CopyRawBytes

WriteRawBytes is used to write data of type rawbytes to any binary
file or I/O device.

WriteRawBytes

ReadRawBytes is used to read data of type rawbytes from any binary
file or I/O device.

ReadRawBytes

Functions
This is a brief description of each function used for raw data communication. For
more information, see the respective function in Technical referencemanual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

RawBytesLen is used to get the valid data length in a rawbytes vari-
able.

RawBytesLen

94 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.2 RAPID components

2.6.3.3 Code examples

About the examples
These examples are simplified demonstrations of how to use rawbytes. For a
more realistic example of how to use rawbytes in DeviceNet communication, see
Write rawbytes to DeviceNet on page 103.

Write and read rawbytes
This example shows how to pack data into a rawbytes variable and write it to a
device. It also shows how to read and unpack a rawbytes variable.

VAR iodev io_device;

VAR rawbytes raw_data;

PROC write_rawbytes()

VAR num length := 0.2;

VAR string length_unit := "meters";

! Empty contents of raw_data

ClearRawBytes raw_data;

! Add contents of length as a 4 byte float

PackRawBytes length, raw_data,(RawBytesLen(raw_data)+1) \Float4;

! Add the string length_unit

PackRawBytes length_unit, raw_data,(RawBytesLen(raw_data)+1)
\ASCII;

Open "HOME:" \File:= "FILE1.DOC", io_device \Bin;

! Write the contents of raw_data to io_device

WriteRawBytes io_device, raw_data;

Close io_device;

ENDPROC

PROC read_rawbytes()

VAR string answer;

! Empty contents of raw_data

ClearRawBytes raw_data;

Open "HOME:" \File:= "FILE1.DOC", io_device \Bin;

! Read from io_device into raw_data

ReadRawBytes io_device, raw_data \Time:=1;

Close io_device;

! Unpack raw_data to the string answer

Continues on next page
Application manual - Controller software IRC5 95
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.3 Code examples

UnpackRawBytes raw_data, 1, answer \ASCII:=10;

ENDPROC

Copy rawbytes
In this example, all data from raw_data_1 and raw_data_2 is copied to
raw_data_3.

VAR rawbytes raw_data_1;

VAR rawbytes raw_data_2;

VAR rawbytes raw_data_3;

VAR num my_length:=0.2;

VAR string my_unit:=" meters";

PackRawBytes my_length, raw_data_1, 1 \Float4;

PackRawBytes my_unit, raw_data_2, 1 \ASCII;

! Copy all data from raw_data_1 to raw_data_3

CopyRawBytes raw_data_1, 1, raw_data_3, 1;

! Append all data from raw_data_2 to raw_data_3

CopyRawBytes raw_data_2, 1, raw_data_3,(RawBytesLen(raw_data_3)+1);

96 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.3.3 Code examples
Continued

2.6.4 File and directory management

2.6.4.1 Overview

Purpose
The purpose of the file and directory management is to be able to browse and edit
file structures (directories and files).

What is included
To handle file and directory management, RobotWare gives you access to:

• instructions for handling directories
• a function for reading directories
• instructions for handling files on a file structure level
• functions to retrieve size and type information.

Basic approach
This is the general approach for file and directory management. For more detailed
examples of how this is done, see Code examples on page 99.

1 Open a directory.
2 Read from the directory and search until you find what you are looking for.
3 Close the directory.

Application manual - Controller software IRC5 97
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.1 Overview

2.6.4.2 RAPID components

Data types
This is a brief description of each data type used for file and directory management.
For more information, see the respective data type in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

dir contains a reference to a directory on disk or network. It can be linked
to the physical directory with the instruction OpenDir.

dir

Instructions
This is a brief description of each instruction used for file and directory management.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

OpenDir is used to open a directory.OpenDir

CloseDir is used to close a directory.CloseDir

MakeDir is used to create a new directory.MakeDir

RemoveDir is used to remove an empty directory.RemoveDir

CopyFile is used to make a copy of an existing file.CopyFile

RenameFile is used to give a new name to an existing file. It can also be
used to move a file from one place to another in the directory structure.

RenameFile

RemoveFile is used to remove a file.RemoveFile

Functions
This is a brief description of each function used for file and directory management.
For more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionFunction

ReadDir is used to retrieve the name of the next file or subdirectory under
a directory that has been opened with the instruction OpenDir.

ReadDir

Note that the first items read by ReadDir are . (full stop character) and ..
(double full stop characters) symbolizing the current directory and its parent
directory.

FileSize is used to retrieve the size (in bytes) of the specified file.FileSize

FSSize (File System Size) is used to retrieve the size (in bytes) of the file
system in which a specified file resides.FSSize can either retrieve the total
size or the free size of the system.

FSSize

IsFile test if the specified file is of the specified type. It can also be used
to test if the file exist at all.

IsFile

98 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.2 RAPID components

2.6.4.3 Code examples

List files
This example shows how to list the files in a directory, excluding the directory itself
and its parent directory (. and ..).

PROC lsdir(string dirname)

VAR dir directory;

VAR string filename;

! Check that dirname really is a directory

IF IsFile(dirname \Directory) THEN

! Open the directory

OpenDir directory, dirname;

! Loop though the files in the directory

WHILE ReadDir(directory, filename) DO

IF (filename <> "." AND filename <> ".." THEN

TPWrite filename;

ENDIF

ENDWHILE

! Close the directory

CloseDir directory;

ENDIF

ENDPROC

Move file to new directory
This is an example where a new directory is created, a file renamed and moved to
the new directory and the old directory is removed.

VAR dir directory;

VAR string filename;

! Create the directory newdir

MakeDir "HOME:/newdir";

! Rename and move the file

RenameFile "HOME:/olddir/myfile", "HOME:/newdir/yourfile";

! Remove all files in olddir

OpenDir directory, "HOME:/olddir";

WHILE ReadDir(directory, filename) DO

IF (filename <> "." AND filename <> ".." THEN

RemoveFile "HOME:/olddir/" + filename;

ENDIF

ENDWHILE

CloseDir directory;

! Remove the directory olddir (which must be empty)

RemoveDir "HOME:/olddir";

Continues on next page
Application manual - Controller software IRC5 99
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.3 Code examples

Check sizes
In this example, the size of the file is compared with the remaining free space on
the file system. If there is enough space, the file is copied.

VAR num freefsyssize;

VAR num f_size;

! Get the size of the file

f_size := FileSize("HOME:/myfile");

! Get the free size on the file system

freefsyssize := FSSize("HOME:/myfile" \Free);

! Copy file if enough space free

IF f_size < freefsyssize THEN

CopyFile "HOME:/myfile", "HOME:/yourfile";

ENDIF

100 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.6.4.3 Code examples
Continued

2.7 Device Command Interface

2.7.1 Introduction to Device Command Interface

Purpose
Device Command Interface provides an interface to communicate with I/O devices
on industrial networks.
This interface is used together with raw data communication, see Raw data
communication on page 93.

What is included
The RobotWare base functionality Device Command Interface gives you access
to:

• Instruction used to create a DeviceNet header.

Basic approach
This is the general approach for using Device Command Interface. For a more
detailed example of how this is done, seeWrite rawbytes to DeviceNet on page103.

1 Add a DeviceNet header to a rawbytes variable.
2 Add the data to the rawbytes variable.
3 Write the rawbytes variable to the DeviceNet I/O.
4 Read data from the DeviceNet I/O to a rawbytes variable.
5 Extract the data from the rawbytes variable.

Limitations
Device command communication require the option for the industrial network in
question.
Device Command Interface is supported by the following type of industrial networks:

• DeviceNet
• EtherNet/IP

Application manual - Controller software IRC5 101
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.7.1 Introduction to Device Command Interface

2.7.2 RAPID components and system parameters

Data types
There are no RAPID data types for Device Command Interface.

Instructions
This is a brief description of each instruction in Device Command Interface. For
more information, see the respective instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

PackDNHeader adds a DeviceNet header to a rawbytes variable. The
header specifies a service to be done (e.g. set or get) and a parameter
on a DeviceNet I/O device.

PackDNHeader

Functions
There are no RAPID functions for Device Command Interface.

System parameters
There are no specific system parameters in Device Command Interface. For
information on system parameters in general, see Technical reference
manual - System parameters.

102 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.7.2 RAPID components and system parameters

2.7.3 Code example

Write rawbytes to DeviceNet
In this example, data packed as a rawbytes variable is written to a DeviceNet I/O
device. For more details regarding rawbytes, see Raw data communication on
page 93.

PROC set_filter_value()

VAR iodev dev;

VAR rawbytes rawdata_out;

VAR rawbytes rawdata_in;

VAR num input_int;

VAR byte return_status;

VAR byte return_info;

VAR byte return_errcode;

VAR byte return_errcode2;

! Empty contents of rawdata_out and rawdata_in

ClearRawBytes rawdata_out;

ClearRawBytes rawdata_in;

! Add DeviceNet header to rawdata_out with service

! "SET_ATTRIBUTE_SINGLE" and path to filter attribute on

! DeviceNet I/O device

PackDNHeader "10", "6,20 1D 24 01 30 64,8,1", rawdata_out;

! Add filter value to send to DeviceNet I/O device

input_int:= 5;

PackRawBytes input_int, rawdata_out,(RawBytesLen(rawdata_out) +
1) \IntX := USINT;

! Open I/O device

Open "/FCI1:" \File:="board328", dev \Bin;

! Write the contents of rawdata_out to the I/O device

WriteRawBytes dev, rawdata_out \NoOfBytes :=
RawBytesLen(rawdata_out);

! Read the answer from the I/O device

ReadRawBytes dev, rawdata_in;

! Close the I/O device

Close dev;

! Unpack rawdata_in to the variable return_status

UnpackRawBytes rawdata_in, 1, return_status \Hex1;

IF return_status = 144 THEN

TPWrite "Status OK from device. Status code:
"\Num:=return_status;

Continues on next page
Application manual - Controller software IRC5 103
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.7.3 Code example

ELSE

! Unpack error codes from device answer

UnpackRawBytes rawdata_in, 2, return_errcode \Hex1;

UnpackRawBytes rawdata_in, 3, return_errcode2 \Hex1;

TPWrite "Error code from device: " \Num:=return_errcode;

TPWrite "Additional error code from device: "
\Num:=return_errcode2;

ENDIF

ENDPROC

104 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.7.3 Code example
Continued

2.8 Logical Cross Connections

2.8.1 Introduction to Logical Cross Connections

Purpose
The purpose of Logical Cross Connections is to check and affect combinations of
digital I/O signals (DO, DI) or group I/O signals (GO, GI). This can be used to verify
or control process equipment that are external to the robot. The functionality can
be compared to the one of a simple PLC.
By letting the I/O system handle logical operations with I/O signals, a lot of RAPID
code execution can be avoided. Logical Cross Connections can replace the process
of reading I/O signal values, calculate new values and writing the values to I/O
signals.
Here are some examples of applications:

• Interrupt program execution when either of three input signals is set to 1.
• Set an output signal to 1 when both of two input signals are set to 1.

Description
Logical Cross Connections are used to define the dependencies of an I/O signal
to other I/O signals. The logical operators AND, OR, and inverted signal values
can be used to configure more complex dependencies.
The I/O signals that constitute the logical expression (actor I/O signals) and the
I/O signal that is the result of the expression (resultant I/O signal) can be either
digital I/O signals (DO, DI) or group I/O signals (GO, GI).

What is included
Logical Cross Connections allows you to build logical expressions with up to 5
actor I/O signals and the logical operations AND, OR, and inverted signal values.

Application manual - Controller software IRC5 105
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.8.1 Introduction to Logical Cross Connections

2.8.2 Configuring Logical Cross Connections

System parameters
This is a brief description of the parameters for cross connections. For more
information, see the respective parameter inConfiguring Logical Cross Connections
on page 106.
These parameters belong to the type Cross Connection in the topic I/O System.

DescriptionParameter

Specifies the name of the cross connection.Name

The I/O signal that receive the result of the cross connection as its new
value.

Resultant

The first I/O signal to be used in the evaluation of the Resultant.Actor 1

If Invert actor 1 is set to Yes, then the inverted value of Actor 1 is used in
the evaluation of the Resultant.

Invert actor 1

Operand between Actor 1 and Actor 2.Operator 1
Can be either of the operands:

• AND - Results in the value 1 if both input values are 1.
• OR - Results in the value 1 if at least one of the input values are 1.

Note

The operators are calculated left to right (Operator 1 first and Operator 4
last).

The second I/O signal (if more than one) to be used in the evaluation of the
Resultant.

Actor 2

If Invert actor 2 is set to Yes, then the inverted value of Actor 2 is used in
the evaluation of the Resultant.

Invert actor 2

Operand between Actor 2 and Actor 3.Operator 2
See Operator 1.

The third I/O signal (if more than two) to be used in the evaluation of the
Resultant.

Actor 3

If Invert actor 3 is set to Yes, then the inverted value of Actor 3 is used in
the evaluation of the Resultant.

Invert actor 3

Operand between Actor 3 and Actor 4.Operator 3
See Operator 1.

The fourth I/O signal (if more than three) to be used in the evaluation of the
Resultant.

Actor 4

If Invert actor 4 is set to Yes, then the inverted value of Actor 4 is used in
the evaluation of the Resultant.

Invert actor 4

Operand between Actor 4 and Actor 5.Operator 4
See Operator 1.

The fifth I/O signal (if all five are used) to be used in the evaluation of the
Resultant.

Actor 5

If Invert actor 5 is set to Yes, then the inverted value of Actor 5 is used in
the evaluation of the Resultant.

Invert actor 5

106 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.8.2 Configuring Logical Cross Connections

2.8.3 Examples

Logical AND
The following logical structure...

xx0300000457

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor
2

Operator 1Invert
actor 1

Actor 1Resultant

Nodo10ANDNodo2ANDNodi1do26

Logical OR
The following logical structure...

xx0300000459

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor
2

Operator 1Invert
actor 1

Actor
1

Resultant

Nodo10ORNodo2ORNodi1do26

Inverted signals
The following logical structure (where a ring symbolize an inverted signal)...

xx0300000460

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor
2

Operator 1Invert
actor 1

Actor
1

Resultant

Yesdo10ORNodo2ORYesdi1do26

Several resultants
The following logical structure can not be implemented with one cross connection...

xx0300000462

Continues on next page
Application manual - Controller software IRC5 107
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.8.3 Examples

... but with three cross connections it can be implemented as shown below.

Invert actor 2Actor 2Operator 1Invert actor 1Actor 1Resultant

Nodo2ANDNodi1di17

Nodo2ANDNodi1do26

Nodo2ANDNodi1do13

Complex conditions
The following logical structure...

xx0300000461

... is created as shown below.

Invert
actor 3

Actor
3

Operator 2Invert
actor 2

Actor 2Operator 1Invert
actor 1

Actor
1

Resultant

Nodo3ANDNodi2do11

Yesdo3ANDNodi12do14

Nodo3ANDNodi13di11

Nodo3ANDNodi13do23

Nodo3ANDNodi13do17

Yesdi11ORNodo14ORNodo11do15

Nodo23ANDNodi11do33

Nodo3ANDNodo17do61

Yesdo33ORNodo15do54

108 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.8.3 Examples
Continued

2.8.4 Limitations

Evaluation order
If more than two actor I/O signals are used in one cross connection, the evaluation
is made from left to right. This means that the operation between Actor 1 and Actor
2 is evaluated first and the result from that is used in the operation with Actor 3.
If all operators in one cross connection are of the same type (only AND or only
OR) the evaluation order has no significance. However, mixing AND and OR
operators, without considering the evaluation order, may give an unexpected result.

Tip

Use several cross connections instead of mixing AND and OR in the same cross
connection.

Maximum number of actor I/O signals
A cross connection may not have more than five actor I/O signals. If more actor
I/O signals are required, use several cross connections.

Maximum number of cross connections
The maximum number of cross connections handled by the robot system is 300.

Maximum depth
The maximum allowed depth of cross connection evaluations is 20.
A resultant from one cross connection can be used as an actor in another cross
connection. The resultant from that cross connection can in its turn be used as an
actor in the next cross connection. However, this type of chain of dependent cross
connections cannot be deeper than 20 steps.

Do not create a loop
Cross connections must not form closed chains since that would cause infinite
evaluation and oscillation. A closed chain appears when cross connections are
interlinked so that the chain of cross connections forms a circle.

Do not have the same resultant more than once
Ambiguous resultant I/O signals are not allowed since the outcome would depend
on the order of evaluation (which cannot be controlled). Ambiguous resultant I/O
signals occur when the same I/O signal is resultant in several cross connections.

Overlapping device maps
The resultant I/O signal in a cross connection must not have an overlapping device
map with any inverted actor I/O signals defined in the cross connection. Using I/O
signals with overlapping device map in a cross connection can cause infinity signal
setting loops.

Application manual - Controller software IRC5 109
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.8.4 Limitations

2.9 Connected Services

2.9.1 Overview

Description
Connected Services (was known as Remote Service previously) is a functionality
available for ABB robot controllers that connects to ABB cloud.
Earlier the Connected Services functionality had been implemented on an external
hardware (Remote Service Box) connected to the Service port of the controller.
Remote Service Box had provided service data collection and the external
connectivity (Wireless GPRS, 3G, or wired).
Connected Services is the software version of Remote Service Box inside
RobotWare.

Purpose
The primary purpose of Connected Services is to remove the need of external
hardware if the robot controller are connected to Internet by the customer on its
WAN port.
Connected Services is then available natively as a plug and connect solution in
RobotWare. The setup concept will be:

• Provide internet connectivity to the controller.
• Enable and register the connected controller to Connected Services.

An ABB 3G/4G/WiFi gateway or other external devices will be made available in
the future to use wireless connectivity.

What is included
The RobotWare base functionality Connected Services gives you access to:

• a Connected Services Agent software to manage the connectivity and the
Service data collection.

• System Parameters used to enable and configure the connectivity.
• dedicated event logs for key events of Connected Services.
• status and information pages available in System Info.

Prerequisites
The Connected Services function requires the controller to be defined in a Service
Agreement. Contact the local ABB Service to create a Service Agreement with the
Connected Services and get access to MyRobot website to perform the registration
after the connection.

Note

MyRobot is the ABB website which gives access to the Service information of a
Robot Controller under a Service Agreement.

Continues on next page
110 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.1 Overview

Basic workflow
Following is the basic workflow for setting up Connected Services.

1 Configure Internet connectivity to the robot controller.
2 Enable Connected Services and startup connection.
3 Register the controller through MyRobot registration page.

Once Connected Services is connected and registered, the service data collection
will run transparently in the background.

Note

UseSystem InfoConnected Services pages for information and local registration.
Use MyRobot website for all Connected Service features and connected service
side registration

Limitations
Following are the limitations of Connected Services:

• The controller identification is done using the controller serial number and
must match the serial number defined in the Service Level Agreement.

• The customer must also provide for the robot controller the connectivity to
public internet , use the ABB wireless gateway or third party supplier when
available.

Application manual - Controller software IRC5 111
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.1 Overview

Continued

2.9.2 Connected Services connectivity

Connected Services connection concept
The concept of Connected Services is that a virtual Software Agent is implemented
inside the controller and it communicates securely with the ABB Connected Services
cloud through Internet. The communication is secured and encrypted using HTTPS
(Secure HTTP) and only from the controller to ABB CSC connector to keep the
customer network isolated from any external Internet access. The following figure
describes these concepts:

xx1500003224

Continues on next page
112 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.2 Connected Services connectivity

Troubleshooting
You can verify the connectivity from the controller to the Connected Services Public
Connector server from your location. This is done by connecting a PC (instead of
the controller) with the same network configuration (WAN IP/Mask, DNS, Route),
and open the path to the root of the server (https://rseprod.abb.com) in a browser.
The connectivity is validated if the DNS name has been resolved, the browser
presents a page indicating the CS server, and secured with an ABB certificate as
shown in the following figure.

xx1500003225

Application manual - Controller software IRC5 113
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.2 Connected Services connectivity

Continued

https://rseprod.abb.com

2.9.3 Configuration - system parameters

Connected Services Connection
The following parameters belong to the topic Communication and the type
Connected Services. For more information, see Technical reference
manual - System parameters.

DescriptionParameter

Enable or disable CS. If CS is disabled there will be no communica-
tion from the Controller.

Enabled

Indicates if the communication is done on Customer Network or by
using ABB Mobile Gateway Solution (to be implemented in future
deliveries).

Connection Type

Adapt the polling rates and traffic volume to the type of connectivity
available:

• Command polling (low) 1 min, (medium) 10 min, (high) 1 hour.
• Register polling (low) 10 min, (medium) 30 min, (high) 2 hour.

Connection Cost

Indicates if a proxy is required to access Internet and its name and
port.

Proxy Used, Name,
Port

Defines if the proxy is authenticated or not, with related credentials
(user, password).

WARNING

The proxy password is stored in plain text.

Proxy Auth, User,
password

IP address of the ABB Mobile Gateway Solution if used (to come in
future deliveries).

Gateway IP Address

WAN configuration
The WAN IP/Mask/Gateway configuration is done in theBoot Application Settings.
The WAN Ethernet port configuration which gives access to the Internet needs to
be done on the controller. The port is defined by its IP, Mask, and possible Gateway.
For details about WAN configuration, see Hardware overview in the Application
manual - EtherNet/IP Scanner/Adapter.

DNS configuration
These parameters belong to the topic Communication and the type DNS Client. A
DNS server need to be defined to resolve the name of the ABB Connected Services
Connector (rseprod.abb.com) to its IP address if ABB Mobile Gateway is not used.
For more details, see Type DNS Client in Technical reference manual - System
parameters.

Note

For quick testing, use DNS as 8.8.8.8 (Google DNS) , then switch to customer
recommended DNS server IP.

Continues on next page
114 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.3 Configuration - system parameters

IP Routing configuration
These parameters belong to the topic Communication and the type IP Routing. In
some cases it is necessary to define some routing parameters to indicate which
specific external device is used as a gateway to access the Internet on customer
network. By default, an IP route is created based on the gateway defined on the
WAN Port. But it is possible to add a specific route if the default gateway should
not be used. For more details, see Type IP Route in Technical reference
manual - System parameters.

Note

If the Internet Gateway is not the main Gateway, the traffic to rseprod.abb.com
and the DNS must be defined as additional routes.
For example, if Internet Gateway has IP address 100.100.100.22, rseprod.abb.com
has IP address 138.227.175.43 (verify by nslookup) and DNS has IP address
8.8.8.8, then you must define the following two routes:

• Route 138.227.175.43/31 to 100.100.100.22
• Route 8.8.8.8/31 to 100.100.100.22

Application manual - Controller software IRC5 115
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.3 Configuration - system parameters

Continued

2.9.4 Configuring Connected Services

Overview
This section explains how the Connected Services is configured with the controller,
when Internet is available on the default gateway. There are two separate network
setups:

• Direct internet connection without proxy.
• Internet connectivity through a proxy.

Direct internet connection
The following procedure provides information about configuring the Connected
Services from the FlexPendant when there is direct internet connection from the
controller.

IllustrationAction

In the ABB menu, select Control Panel.1

Select Configuration.2

From Topics, select Communication.3

xx1600001326

Select Connected Services and edit
RSCON.

4

xx1600001327

In Enabled, select Yes5

Tap OK and restart the controller to take
effect of the changes.

6

Continues on next page
116 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.4 Configuring Connected Services

Direct internet connection with manual DNS
The following procedure provides information about configuring the Connected
Services from the FlexPendant when there is direct internet connection with manual
DNS.

IllustrationAction

In the ABB menu, select Control Panel.1

Select Configuration.2

From Topics, select Communication.3

xx1600001329

Select DNS Client and edit DNS Client.4

xx1600001330

Edit 1st Name Server5

Tap OK and restart the controller to take
effect of the changes.

6

Internet connection with proxy
The following procedure provides information about configuring the Connected
Services from the FlexPendant when there is internet connection with proxy.

IllustrationAction

In the ABB menu, select Control Panel.1

Tap Configuration.2

From Topics, select Communication.3

SelectConnected Services and inProxy
Used, select Yes.

4

Continues on next page
Application manual - Controller software IRC5 117
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.4 Configuring Connected Services

Continued

IllustrationAction

xx1600001331

InProxyAuth, selectNone for no authen-
tication from the drop-down list.

5

xx1600001332

In Proxy Auth , select Basic for basic
authentication from the drop-down list.

• Define the proxy name, proxy port,
user name, and password for the
basic authentication.

6

Tap OK and restart the controller to take
effect of the changes.

7

Note

Manually define the DNS, if it is not provided automatically when proxy is used.

118 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.4 Configuring Connected Services
Continued

2.9.5 Configuring Connected Services using gateway box

Overview
This section explains how the Connected Services is configured using an external
Internet gateway (3G/4G, WiFi, etc) not defined as default gateway in the controller.
In this case, additional routes are needed to reach the external Internet gateway.

Controller with DHCP
The following procedure provides information about configuring the Connected
Services from the FlexPendant when there is controller with DHCP.

IllustrationAction

In the ABB menu, select Control Panel.1

Select Configuration.2

From Topics, select Communication.3

xx1600001333

Select IP Route and tap Add.4

xx1600001334

xx1600001335

Enter the details for Destination, Gate-
way, and Label.

• In this example, Destination:
138.227.175.43/31 is the
rsepro.abb.com IP

• Gateway: 192.168.125.83

5

Continues on next page
Application manual - Controller software IRC5 119
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.5 Configuring Connected Services using gateway box

IllustrationAction

Tap OK and restart the controller to take
effect of the changes.

6

Controller with DHCP and manual DNS
The following procedure provides information about configuring the Connected
Services from the FlexPendant for controller with DHCP and manual DNS.

IllustrationAction

In the ABB menu, select Control Panel.1

Select Configuration.2

From Topics, select Communication.3

Select IP Route and tap Add.4

xx1600001337

Enter the details for Destination, Gate-
way, and Label.

• If DNS IP is entered manually, add
the routing for the DNS IP.

• In this example, Destination:
8.8.8.8/31 is Google DNS.

5

Tap OK and restart the controller to take
effect of the changes.

6

Continues on next page
120 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.5 Configuring Connected Services using gateway box
Continued

Gateway box on customer network
When gateway box is configured for multiple controllers, then the LAN IP of the
gateway box changes. For more information about how to do setting for the gateway
box for multiple controllers, see Product manual - Connected Services.
The gateway box should be connected to the customer network. And, the LAN IP
should be modified to match with the customer network IP segment. A typical
network infrastructure is shown below.

xx1600001338

Note

The network infrastructure is an example to demonstrate the network topology.

Steps to configure DNS manually

IllustrationAction

In the ABB menu, select Control Panel.1

Select Configuration.2

From Topics, select Communication.3

Select IP Route and tap Add.4

Continues on next page
Application manual - Controller software IRC5 121
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.5 Configuring Connected Services using gateway box

Continued

IllustrationAction

xx1600001339

Enter the details for Destination, Gate-
way, and Label.

• Enter the Gateway IP as box IP.
In this example, it is 172.16.16.25.

5

Tap OK and restart the controller to take
effect of the changes.

6

Note

Manually define the DNS, if it is not provided automatically. Also, define a route
to go through the gateway box for the DNS IP.

122 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.5 Configuring Connected Services using gateway box
Continued

2.9.6 Connected Services on LAN 3

Overview
When internet is not provided on production WAN network, we can configure and
use LAN 3 to connect with the Connected Services server.
LAN 3 (available on port X5) acts as a separate switch and its IP can be configured
manually.

Note

There is a risk of conflict between PROFINET and LAN 3 in some configuration.
It is not possible to use Connected Services in LAN 3, if PROFINET is set up in
isolated mode. For more details, see section Isolated LAN 3 or LAN 3 as part
of the private network in Application manual - PROFINET Controller/Device.

Note

It is not possible to use LAN 3 in RW 6.07. Only WAN port is supported for this
release.

Steps to configure LAN 3
To configure the IP manually, follow the steps below:

ActionStep

In the ABB menu, select Control Panel.1

Select Configuration2

From Topics, select Communication

Select IP Settings and tap Add
• Enter the details for IP Address, Interface, and Label.
• Change the Interface to LAN3.

3

Tap OK and restart the controller to take effect of the changes.4

Continues on next page
Application manual - Controller software IRC5 123
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.6 Connected Services on LAN 3

The following diagram explains a sample with an Internet Gateway Box.

xx1700000061

As shown in the diagram above (for example robot controller 1), assign IP address
to port X5 (LAN 3) as 172.16.16.21 and change the LAN IP of the Gateway Box to
the same IP segment as 172.16.16.25.
A route may be needed to send the traffic to ABB Connected Services server
(rseprod.abb.com:138.227.175.43) through the Internet Gateway on LAN 3 instead
of the default Gateway on WAN.
Then the routing entry should be added as follows:

• Destination: 138.227.175.43/31
• Gateway: 172.16.16.25 (Box LAN IP)

In this example, configure LAN 3 of all the controllers to the same IP segment
(172.16.16.xx) to connect multiple controllers together with the Gateway Box.
If there is no customer DNS on the production WAN network, configure the DNS
manually as the Gateway IP. See Steps to configure DNS manually on page 121.

Note

If the Gateway Box only provides Internet access without DNS resolution then
add an external DNS manually, for example 8.8.8.8. Then additional routing
should be added as follows:

• Destination: 8.8.8.8/31
• Gateway: 172.16.16.25 (Box LAN IP)

124 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.6 Connected Services on LAN 3
Continued

2.9.7 Connected Services registration

Connected Services startup
The Connected Services startup is based on the following steps:

• (0) Connected Services preparation
• (1) Connected Services configuration
• (2) Connected Services connectivity
• (3) Connected Services registration
• (4) Connected Services connected and registered

When these steps are done, the software Agent is securely connected and identified
with a client certificate. The following figure describes these concepts:

ABB Connected

Services Center

Internet

Internet

My RobotCustomer/

ABB CS Admin

Customer/

ABB CS Tech On Site

3c3b

3a 1a 0

2d
2b

2c

2a

3d

4

xx1500003226

DescriptionStep

Check controller S/N and internet connectivity0

Enable CSE and set up connectivity configuration1a

CS connectivity in place2a

Low poll for registration2b

Registration not trusted (get reg code)2c

Display registration code2d

Get registration code3a

Give controller S/N and registration code3b

Select controller S/N in SA and register with registration code3c

Registration trusted (client certificate)3d

Connected and registered secure CS session4

Continues on next page
Application manual - Controller software IRC5 125
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.7 Connected Services registration

Connected Services preparation
• Verify the controller serial number with the serial number found in the

controller module cabinet.
• Verify and provide Internet connectivity to the robot controller.
• Verify that the service agreement for this controller is available with ABB

Robotics Service.

Connected Services configuration
• Configure the connectivity parameters.
• Enable Connected Services

Connected Services connectivity
• Software Agent connects to the ABB Connected Services Center.
• An initial registration process starts at low polling rate.
• The initial registration is incomplete and not yet fully trusted.
• A registration code is received to finalize the trust relation.
• The registration code is made available on the Connected Services

registration page.

Connected Services registration
• The customer/ABB on site provides the controller serial number and

registration code to the Connected Services Administrator for registration.
• The Connected Services Administrator validates this registration code in

MyRobot on its service agreement.
• The registration trust starts and implements a client certificate in the

controller.

Connected Services connected and registered
• The controller is connected, registered, and identified in the service

agreement.
• The connection is trusted with a client certificate.
• Connected Services is now actively running on the robot controller.

126 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.7 Connected Services registration
Continued

2.9.8 Connected Services information

Connected Services pages

Introduction
The Connected Services information pages are available under System Info >
Software resources > Communication > Connected Services. The following are
the 4 Connected Services information pages:

• Overview
• Server Connection
• Registration
• Advanced

Note

The information on a page can be refreshed by changing the page or by pressing
the Refresh button. The Refresh button also forces a connection with the server
if the software agent is waiting. (for example, wait for registration
acknowledgement from MyRobot). This is useful in case of slow polling when
connection cost is set to High.

Overview page
The Overview page provides a summary of the Connected Services status and
information. If the status is not active then the other pages provide more detailed
information.

ExamplePossible valuesDescriptionField

YesYes/NoDisplays the value of the master
configuration switch for turning the
Connected Services on/off.

Enabled

Active"-"Displays the current status to see
whether there is a need to navigate
to the Server connection page or
Registration page.

Status
Failed
Initializing
Shutdown
Registration in
progress
Trying to connect
Active

12-45678Controller Serial
number

Displays the identifier that is used
to identify the controller in Connec-
ted Service.

Serial number

6.03.0088RobotWare ver-
sion name

Displays the RobotWare version that
is sent to the server.

RobotWare ver-
sion

20-NDisplays the number of times the
software Agent been auto-restarted.
This is used to see if watchdog has
restarted the by it.

Restart counter
If not Enabled,
then display: 0

0116/ROBOT-
WARE-
6.02.0000+/5196

"Data Collector
Script name"
"-"

Displays the downloaded data col-
lector code version.

Script version

Continues on next page
Application manual - Controller software IRC5 127
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.8 Connected Services information

ExamplePossible valuesDescriptionField

SA_FR12_16"Name of the ser-
vice agreement"

To verify that the controller is asso-
ciated to the expected service
agreement.

Service Agree-
ment

"-"

ABB Robotics"Customer Name
of the service
agreement"

To verify that the controller is asso-
ciated to the expected service
agreement.

Customer name

"-"

France"Country of the
service agree-
ment"

To verify that the controller is asso-
ciated to the expected service
agreement.

Country

"-"

On refresh, the software Agent
replies with the current data and
breaks the waiting state (if waiting)
to contact the server and refreshes
the information.

Refresh button

Server Connection page
The Server Connection page provides a summary of the CS connectivity to the
server.

ExamplePossible valuesDescriptionField

Active"-"Displays the current status to see
whether there is a need to navigate
to the Server connection page or
Registration page.

Status
Failed
Initializing
Shutdown
Registration in
progress
Trying to connect
Active

ConnectedInitializingDisplays the status of communica-
tion with the server and the type of
error.

Connection
Status Server not reach-

able
Server not au-
thenticated
Server error (HT-
TP xxxx)
Connected

"HH:MM:SS ago"Displays the relative time since the
information on the Server connec-
tion page has been generated.

Last updated

rseprod.abb.com""Displays the name of the server that
software Agent is configured with.

Server name
Server name

138.227.175.43""Displays the IP address of the serv-
er and the port number used for
connection. The IP address is the
result of DNS name resolution done
by software Agent.

Server IP
Server IP

rseprod.abb.com""Displays the server certificate name
information.

Server certific-
ate name Server name

Untrusted (Serv-
er)

Continues on next page
128 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.8 Connected Services information
Continued

ExamplePossible valuesDescriptionField

ABB issuing CA
6

""
Issuer

Displays the name of the server
certificate issuer.

Server certific-
ate issuer

Untrusted (Is-
suer)

Nov 21 07:09:28
2017 GMT

""
Issuer

Displays the server certificate date.Server certific-
ate valid until

Expired (Date)

16-01-08
13:52:33

Displays the controller date and
time details.

Note

It is important to set the correct time
in the controller as this is needed
for the certificate process.

Controller time

10.0.23.45Not AvailableDisplays the DNS information.DNS server
DNS value

On refresh, the software Agent re-
sponds with the current data and
breaks the waiting state (if waiting)
to contact the server and refreshes
the information.

Refresh button

Registration page
TheRegistration page provides a summary of the Connected Services registration.

ExamplePossible valuesDescriptionField

Active"-"Displays the current status to see
whether there is a need to navigate
to the Server connection page or
Registration page.

Status
Failed
Initializing
Shutdown
Registration in
progress
Trying to connect
Active

Register with
code in MyRobot

Register with
code in MyRobot

Displays the registration status and
code.

Registration
Status

Registration in
progress
Registered
Failed

456735"-"Displays the registration code. This
code can be used to login to MyRo-
bot.

Registration
code Code value

On refresh, the software Agent re-
sponds with the current data and
breaks the waiting state (if waiting)
to contact the server and refreshes
the information.

Refresh button

Continues on next page
Application manual - Controller software IRC5 129
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.8 Connected Services information

Continued

Advanced page
The Advanced page provides advanced information about the dialog between
software Agent and server.

ExamplePossible valuesDescriptionField

GetMessageRegisterDisplays the last message sent.Last HTTP mes-
sage CheckRegister

GetLoginInfo
GetMessage
...

Sent hh:mm:ss
ago

Displays the date and time when the
last message was sent.

Last HTTP mes-
sage time

Not AvailableNot AvailableDisplays the HTTP error when the
last message was sent and the
message ID if 4XX.

Last HTTP error
Error HTTP XXX
+ Message

GetMessage in
70 seconds

Displays the next message to send
and the date to send the message.

Next message

Not AvailableNot AvailableDisplays the last command received
from server.

Last command
Reboot
Reset
Ping
Diagnostic
...

On refresh, the software Agent re-
sponds with the current data and
breaks the waiting state (if waiting)
to contact the server and refreshes
the information.

Refresh button

0/1/0/3/4/0/1/40-N for each
server error

Displays a count of the following
servers errors:

• Timeout errors
• Request errors
• Connection errors
• Connection not Available er-

rors
• Unknown errors
• Authentication errors
• Proxy errors
• Server errors

Server Errors

Connected Services logs
The software Agent generates some event logs in the central controller event log.
Event logs are generated during starting, registering, unregistering, losing
connectivity, and during other key events.
The events logs are in the range of 170XXX and are described with all the other
controller event logs documentation. For more details, see Operating
manual - Troubleshooting IRC5.

Continues on next page
130 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.8 Connected Services information
Continued

Force a reset of the software agent
It is possible to reset the software agent. When you reset, the software agent erases
all its internal information including the registration information, the data collector
script, and all the locally stored service information. The configuration will not be
reset, but a new registration is required to reactivate the Connected Services.
Use the following procedure to reset the software agent:

Action

Tap the ABB button to display the ABB menu.
Process applications are listed in the menu.

1

Tap Program Editor -> Debug -> Call Routine.

Note

Tap PP to Main if Debug is disabled.

2

TapConnected Services Reset ->Go to. Press theMotors on button on the controller.3

Press the Play button to execute the reset routine - > tap Reset.4

Application manual - Controller software IRC5 131
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.9.8 Connected Services information

Continued

2.10 User logs

2.10.1 Introduction to User logs

Description
The RobotWare base functionality User logs generates event logs for the most
common user actions. The event logs are generated in the group Operational
events, number series 10xxx.
For more information on handling the event log, see Operating manual - IRC5 with
FlexPendant and Operating manual - Troubleshooting IRC5.

Purpose
The purpose of User logs is to track changes in the robot controller related to user
actions. This can for example be helpful to find the root cause if a production stop
occurs.

What is included
The RobotWare base functionality User logs generates event logs for the following
changes related to user actions. All event logs are described in Operating
manual - Troubleshooting IRC5.

Event logsUser actionTopic

10140Changing the speed or run mode (single cycle/continuous).
Making changes to the task selection panel. Setting or reset-
ting non motion execution mode.

Program exe-
cution 10145

10146
10153
10154
10284
10285

10144Simulating wait instructions, for example WaitTime,
WaitUntil, WaitDx, etc.

Simulate wait
instructions

10040Opening or closing RAPID programs or modules, editing
RAPID code, or modifying robot positions.

RAPID
changes 10041

10061
10062
10063
10064
10069
10078
10079
10147

10141Moving the program pointer to main, to a routine, to a posi-
tion, or to a service routine (call routine).

Program
pointer move-
ments

10142
10143
10149

Continues on next page
132 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.10.1 Introduction to User logs

Event logsUser actionTopic

10205Updating the revolution counters or performing a calibration.Changes on
the mechanic-
al unit

10206
10290
10292

10280Changing the tool, the work object, the payload, the coordin-
ate system, or go to a position.

Jogging
10281
10282
10283
10286
10287
10288
10289
10291

10293Setting or resetting the jog or path supervision. Setting the
level of supervision.

Supervision
10294
10295
10296
10297
10298

10250Loading configuration data or changing a configuration at-
tribute.

Change of
configuration

10200Clearing the event log or changing date and time.System
changes 10201

10202

10115Changing the data in the serial measurement board or
changing the data in the robot memory.

Serial meas-
urement
board

10116
10117
10118

10148Setting or pulsing I/O signals.I/O
10160
10161

Application manual - Controller software IRC5 133
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

2 RobotWare-OS
2.10.1 Introduction to User logs

Continued

This page is intentionally left blank

3 Motion performance
3.1 Absolute Accuracy [603-1, 603-2]

3.1.1 About Absolute Accuracy

Purpose
Absolute Accuracy is a calibration concept that improves TCP accuracy. The
difference between an ideal robot and a real robot can be several millimeters,
resulting from mechanical tolerances and deflection in the robot structure.Absolute
Accuracy compensates for these differences.
Here are some examples of when this accuracy is important:

• Exchangeability of robots
• Offline programming with no or minimum touch-up
• Online programming with accurate movement and reorientation of tool
• Accurate cell alignment for MultiMove coordinated motion
• Programming with accurate offset movement in relation to eg. vision system

or offset programming
• Re-use of programs between applications

The option Absolute Accuracy is integrated in the controller algorithms and does
not need external equipment or calculation.

Note

The performance data is applicable to the corresponding RobotWare version of
the individual robot.

Note

Singularities might appear in slightly different positions on a real robot compared
to RobotStudio, where Absolute Accuracy is off compared to the real controller.

What is included
Every Absolute Accuracy robot is delivered with:

• compensation parameters saved in the robot memory
• a birth certificate representing the Absolute Accuracy measurement protocol

for the calibration and verification sequence.
A robot with Absolute Accuracy calibration has a label with this information on the
manipulator.
Absolute Accuracy supports floor mounted, wall mounted, and ceiling mounted
installations. The compensation parameters that are saved in the robot memory
differ depending on which Absolute Accuracy option is selected.

Continues on next page
Application manual - Controller software IRC5 135
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.1 About Absolute Accuracy

When is Absolute Accuracy being used
Absolute Accuracy works on a robot target in Cartesian coordinates, not on the
individual joints. Therefore, joint based movements (e.g. MoveAbsJ) will not be
affected.
If the robot is inverted, the Absolute Accuracy calibration must be performed when
the robot is inverted.

Absolute Accuracy active
Absolute Accuracy will be active in the following cases:

• Any motion function based on robtargets (e.g. MoveL) and ModPos on
robtargets

• Reorientation jogging
• Linear jogging
• Tool definition (4, 5, 6 point tool definition, room fixed TCP, stationary tool)
• Work object definition

Absolute Accuracy not active
The following are examples of when Absolute Accuracy is not active:

• Any motion function based on a jointtarget (MoveAbsJ)
• Independent joint
• Joint based jogging
• Additional axes
• Track motion

Note

In a robot system with, for example, an additional axis or track motion, the
Absolute Accuracy is active for the manipulator but not for the additional axis or
track motion.

RAPID instructions
There are no RAPID instructions included in this option.

Absolute Accuracy and MultiMove
If the main robot in a MultiMove system has the Absolute Accuracy option, it opens
up Absolute Accuracy capability for all the robots in the system. However, each
robot needs to be calibrated individually.

Note

Note that this is the only RobotWare option that is relevant for an additional robot.

Note

It is possible to mix robots with and without the option Absolute Accuracy
arbitrarily in a MultiMove system.

136 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.1 About Absolute Accuracy
Continued

3.1.2 Useful tools

Overview
The following products are recommended for operation and maintenance of
Absolute Accurate robots:

• Load Identification
• CalibWare (Absolute Accuracy calibration tool)

Load Identification
Absolute Accuracy calculates the robot's deflection depending on payload. It is
very important to have an accurate description of the load.
Load Identification is a tool that determines the mass, center of gravity, and inertia
of the payload.
For more information, see Operating manual - IRC5 with FlexPendant.

CalibWare
CalibWare, provided by ABB, is a tool for calibrating Absolute Accuracy. The
documentation to CalibWare describes the Absolute Accuracy calibration procedure
in detail.
CalibWare is used at initial calibration and when servicing the robot.

Application manual - Controller software IRC5 137
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.2 Useful tools

3.1.3 Configuration

Activate Absolute Accuracy
Use RobotStudio and follow these steps (see Operating manual - RobotStudio for
more information):

1 If you do not already have write access, click Request Write Access and
wait for grant from the FlexPendant.

2 Click Configuration Editor and select Motion.
3 Click the type Robot.
4 For the parameter Use Robot Calibration, change the value to r1_calib.
5 For a MultiMove system, configure the parameter Use Robot Calibration for

each robot. It should be set to r2_calib for robot 2, r3_calib for robot 3, and
r4_calib for robot 4.

6 No restart is required.

Tip

To verify that Absolute Accuracy is active, look at the Jogging window on the
FlexPendant. When Absolute Accuracy is active, the text "Absolute Accuracy
On" is shown in the left window. In a MultiMove system, check this status for all
mechanical units.

Deactivate Absolute Accuracy
Use RobotStudio and follow these steps (see Operating manual - RobotStudio for
more information):

1 If you do not already have write access, click Request Write Access and
wait for grant from the FlexPendant.

2 Click Configuration Editor and select the topic Motion.
3 Click the type Robot.
4 Configure the parameter Use Robot Calibration and change the value to

"r1_uncalib".
5 For a MultiMove system, repeat step 3 and 4 for each robot. Use Robot

Calibration is then set to "r2_uncalib" for robot 2, "r3_uncalib" for robot 3
and "r4_uncalib" for robot 4.

6 No restart is required.

Change calibration data
If you exchange the manipulator, the calibration data for the new manipulator must
be loaded. This is done by copying the calibration data from the robot memory to
the robot controller.
Use the FlexPendant and follow these steps (for more information, see Operating
manual - IRC5 with FlexPendant):

Action

Tap the ABB menu and then Calibration.1

Continues on next page
138 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.3 Configuration

Action

Tap on the robot you wish to update.2

Tap the tab Robot Memory.3

Tap Advanced.4

Tap Clear Controller Memory.5

Tap Clear and then confirm by tapping Yes.6

Tap Close.7

Tap Update.8

Tap Cabinet or robot has been exchanged and confirm by tapping Yes.9

Application manual - Controller software IRC5 139
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.3 Configuration

Continued

3.1.4 Maintenance

3.1.4.1 Maintenance that affect the accuracy

Overview
This section will focus on those maintenance activities that directly affect the
accuracy of the robot, summarized as follows:

• Tool recalibration
• Motor replacement
• Wrist replacement (large robots)
• Arm replacement (lower arm, upper arm, gearbox, foot)
• Manipulator replacement
• Loss of accuracy

Note

If the RobotWare version on the controller must be downgraded, then contact
your local ABB for support regarding compatible versions of Absolute Accuracy.

Tool recalibration
For information about tool recalibration, see Tool calibration on page 154.

Motor replacement
Replacement of all motors requires a re-calibration of the corresponding resolver
offset parameter using the standard calibration method for the respective robot.
This is described in the product manual for the robot.
If the motor replacement requires disassembly of the arm, then see Arm
replacement or disassembly on page 140.

Wrist replacement
Replacement of the wrist unit requires a re-calibration of the resolver offsets for
axes 5 and 6 using the standard calibration method for the respective robot.

Arm replacement or disassembly
Replacement of any of the robot arms, or other mechanical structure (excluding
wrist), changes the structure of the robot to the extent that a robot recalibration is
required. It is recommended that, after an arm replacement, the entire robot should
be recalibrated to ensure optimal Absolute Accuracy functionality. This is typically
performed with CalibWare and a separate measurement system. CalibWare can
be used together with any generic 3Dmeasurement system.
For more information about the calibration process, see documentation for
CalibWare.

Continues on next page
140 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.4.1 Maintenance that affect the accuracy

A summary of the calibration process is presented as follows:

Action

Replace the affected component.1

Perform a resolver offset calibration for all axes. See the product manual for the
respective robot.

2

Recalibrate the TCP.3

Check the accuracy by comparison to a fixed reference point in the cell.4

Check the accuracy of the work objects.

Note

An update of the defined work objects will make the deviation less in positioning.

5

Check the accuracy of the positions in the current application.6

If the accuracy still is unsatisfactory, perform an Absolute Accuracy calibration of
the entire robot. See documentation for CalibWare.

7

Manipulator replacement
When a robot manipulator is replaced without replacing the controller cabinet, it
is necessary to update the Absolute Accuracy parameters in the controller cabinet
and realign the robot to the cell. The Absolute Accuracy parameters are updated
by loading the replacement robot’s calibration parameters into the controller as
described in Change calibration data on page138. Ensure that the calibration data
is loaded and that Absolute Accuracy is activated.
The alignment of the replacement robot to the cell depends on the robot alignment
technique chosen at installation. If the robot mounting pins are aligned to the cell
then the robot need only be placed on the pins - no further alignment is necessary.
If the robot was aligned using a robot program then it is necessary to measure the
cell fixture(s) and measure the robot in several positions (for best results use the
same program as the original robot). See Measure robot alignment on page 152.

Application manual - Controller software IRC5 141
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.4.1 Maintenance that affect the accuracy

Continued

3.1.4.2 Loss of accuracy

Cause and action
Loss of accuracy usually occur after robot collision or large temperature variations.
It is necessary to determine the cause of the errors, and take adequate action.

...then...If...

recalibrate if the TCP has changed.the tool is not prop-
erly calibrated

run Load Identification to ensure correct mass, centre of gravity and
inertia for the active tool.

the tool load is not
correctly defined

1 Check that the axis scales show that the robot stands correctly
in the home position.

2 If the indicators are not aligned, move the robot to correct posi-
tion and update the revolution counters.

3 If the indicators are close to aligned but not correct, re-calibrate
with the standard calibration for the robot.

the resolver offsets
are no longer valid

1 Check by moving the robot to a predefined position on the fix-
ture(s).

2 Visually assessing whether the deviation is excessive.
3 If excessive, realign robot to fixture(s).

the robot’s relation-
ship to the fix-
ture(s) has
changed

1 Visually assess whether the robot is damaged.
2 If damaged then replace entire manipulator -or- replace affected

arm(s) -or- recalibrate affected arm(s).

the robot structure
has changed

142 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.4.2 Loss of accuracy

3.1.5 Compensation theory

3.1.5.1 Error sources

Types of errors
The errors compensated for in the controller derive from the mechanical tolerances
of the constituent robot parts. A subset of these are detailed in the illustration
below.
Compliance errors are due to the effect of the robot’s own weight together with the
weight of the current payload. These errors depend on gravity and the
characteristics of the load. The compensation of these errors is most efficient if
you use Load Identification (see Operating manual - IRC5 with FlexPendant).
Kinematic errors are caused by position or orientational deviations in the robot
axes. These are independent of the load.

Illustration
There are several types of errors that can occur in each joint.

en0300000232

Application manual - Controller software IRC5 143
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.5.1 Error sources

3.1.5.2 Absolute Accuracy compensation

Introduction
Both compliance and kinematic errors are compensated for with "fake targets".
Knowing the deflection of the robot (i.e. deviation from ordered position), Absolute
Accuracy can compensate by ordering the robot to a fake target.
The compensation works on a robot target in cartesian coordinates, not on the
individual joints. This means that it is the position of the TCP (marked with an arrow
in the following illustrations) that is correctly compensated.

Desired position
The following illustration shows the position you want the robot to have.

xx0300000225

Position due to deflection
The following illustration shows the position the robot will get without Absolute
Accuracy. The weight of the robot arms and the load will make a deflection on the
robot. Note that the deflection is exaggerated.

xx0300000227

Fake target
In order to get the desired position, Absolute Accuracy calculates a fake target.
When you enter a desired position, the system recalculates it to a fake target that
after the deflection will result in the desired position.

xx0300000226

Continues on next page
144 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.5.2 Absolute Accuracy compensation

Compensated position
The actual position will be the same as your desired position. As a user you will
not notice the fake target or the deflection. The robot will behave as if it had no
deflection.

xx0300000224

Application manual - Controller software IRC5 145
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.5.2 Absolute Accuracy compensation

Continued

3.1.6 Preparation of Absolute Accuracy robot

3.1.6.1 ABB calibration process

Overview
This section describes the calibration process that ABB performs on each Absolute
Accuracy robot, regardless of robot type or family, before it is delivered.
The process can be divided in four steps:

1 Resolver offset calibration
2 Absolute Accuracy calibration
3 Calibration data stored in the robot memory
4 Absolute Accuracy verification
5 Generation of a birth certificate

Resolver offset calibration
The resolver offset calibration process is used to calibrate the resolver offset
parameters.
For information on how to do this, see the product manual for the respective robot.

Absolute Accuracy calibration
The Absolute Accuracy calibration is performed on top of the resolver offset
calibration, hence the importance of having repeatable methods for both processes.
Each robot is calibrated with maximum load to ensure that the correct compensation
parameters are detected (calibration at lower load might not result in a correct
determination of the robot flexibility parameters.) The process runs the robot to
100 jointtarget poses and measures each corresponding measurement point
coordinate. The list of poses and measurements are fed into the CalibWare
calibration core and a set of robot compensation parameters are created.

Continues on next page
146 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.6.1 ABB calibration process

For information on how to do this, see documentation for CalibWare.

en0300000248

Absolute Accuracy verification
The parameters are loaded onto the controller and activated. The robot is then run
to a set of 50 robtarget poses. Each pose is measured and the deviation from
nominal determined.
For information on how to do this, see documentation for CalibWare.
The requirements for acceptance vary between robot types, see typical performance
data in the product specification for the respective robot.

Compensation parameters and birth certificate
The compensation parameters are saved in the robot memory (see Compensation
parameters on page 149).
A birth certificate is created representing the Absolute Accuracy measurement
protocol for the calibration and verification sequence (see Birth certificate on
page 148).

Application manual - Controller software IRC5 147
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.6.1 ABB calibration process

Continued

3.1.6.2 Birth certificate

About the birth certificate
All Absolute Accuracy robots are shipped with a birth certificate. It represents the
Absolute Accuracy measurement protocol for the calibration and verification
sequence.
The birth certificate contains the following information:

• Robot information (robot type, serial number, version of Absolute Accuracy)
• Accuracy information (maximum, average and standard deviation for finepoint

error distribution)
• Tool information (TCP, mass, center of gravity)
• Description of measurement protocol (measurement and calibration system,

number of points, measurement point location)

148 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.6.2 Birth certificate

3.1.6.3 Compensation parameters

About the compensation parameters
All Absolute Accuracy robots are shipped with a set of compensation parameters,
as part of the system parameters (configuration). As the resolver offset calibration
is integral in the Absolute Accuracy calibration, the resolver offset parameters are
also stored in the robot memory.

The compensation parameters
The compensation parameters are defined in the following configuration types:

• ROBOT_CALIB
• ARM_CALIB
• JOINT_CALIB
• PARALLEL_ARM_CALIB
• TOOL_INTERFACE
• MOTOR_CALIB

The type ROBOT_CALIB defines the top level of the calibration structure. The
instance r1_calib activates the Absolute Accuracy functionality by specifying the
flag -absacc. See Activate Absolute Accuracy on page 138.
The types ARM_CALIB, JOINT_CALIB, PARALLEL_ARM_CALIB, and
MOTOR_CALIB are reserved by the system and are only shown when the Absolute
Accuracy option is selected in theModify Installation dialog. The parameter values
can be changed by importing a new configuration file.
The compensation parameters are included in a backup, in the file moc.cfg.

Application manual - Controller software IRC5 149
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.6.3 Compensation parameters

3.1.7 Cell alignment

3.1.7.1 Overview

About cell alignment
The compensation parameters for the Absolute Accuracy robot are determined
from the physical base plate to the robot tool. For many applications this is enough,
the robot can be used as any other robot. However, it is common that Absolute
Accuracy robots are aligned to the coordinates in their cells. This section describes
this alignment procedure. For a more detailed description, see documentation for
CalibWare.

Alignment procedure
In order for the robot to be accurate with respect to the entire robot cell, it is
necessary to install the robot correctly. In summary, this involves:

DescriptionAction

Determine the relationship between the measurement
system and the fixture. SeeMeasure fixture alignment
on page 151.

Measure fixture alignment1

Determine the relationship between the measurement
system and the robot. See Measure robot alignment
on page 152.

Measure robot alignment2

Determine the relationship between, for example, the
robot and the fixture. See Frame relationships on
page 153.

Calculate frame relationships3

Determine the relationship between the robot tool and
other cell components. See Tool calibration on
page 154.

Calibrate tool4

Illustration

User (Fixture)

Measurement

system base

=Reference points

=Mounting pins
X

Y

Z

X

Y

Z

World

=Reference points

X

Y

Z

X

Y

Z

Robot base

=Robtargets

1.

1.

2.
3.

3.

Work object

transformation

Base frame

transformation

en0300000239

150 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.7.1 Overview

3.1.7.2 Measure fixture alignment

About fixture alignment
A fixture is defined as a cell component that is associated with a particular
coordinate system. The interaction between the robot and the fixture requires an
accurate relationship in order to ensure Absolute Accuracy.
Absolute Accuracy fixtures must be equipped with at least three (preferably four)
reference points, each with clearly marked position information.

Fixture measurement procedure
The alignment of the fixture is done in the following steps:

1 Enter the reference point names and positions into the alignment software.
2 Measure the reference points and assign the same names.
3 Use the alignment software to match the reference to measured points and

determine the relationship frame. All measurement systems support this
form of transformation.

Illustration

User (Fixture)

Measurement

system base

1

2
3

4

=Reference points

X

Y

Z

X

Y

Z

en0300000237

Frame relationshipReference positionsMeasurement positions

1) RobotStudio work objectPos1: 100, 100, 100Pos1: 100, 100, 200
(0,0,-100,0,0,0)Pos2: 100, 200, 100Pos2: 100, 200, 200
(x,y,z,roll,pitch,yaw

Pos3: 200, 200, 100Pos3: 200, 200, 200

Pos4: 200, 100, 100Pos4: 200, 100, 200

Application manual - Controller software IRC5 151
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.7.2 Measure fixture alignment

3.1.7.3 Measure robot alignment

Select method
The relationship between the measurement system and the robot can be determined
in the following ways:

DescriptionAlignment procedure

The equivalent to the fixture alignment in which the physical
base pins are measured and aligned with respect to the ref-
erence positions detailed in the product manual for the re-
spective robot.

Alignment to physical base

Measuring several robot poses and letting the alignment
software determine the robot alignment.

Alignment to theoretical base

Alignment to physical base
The advantage of aligning the robot as a fixture is in its simplicity - the robot is
treated as another fixture in the cell and its base points measured accordingly.
The disadvantage is that small errors in the subsequent placement of the robot on
the pins can result is large TCP errors due to the reach of the robot (i.e. the
placement of the robot is not calibrated.)
In order to determine the reference point coordinates, it is necessary to consult
the product manual for that robot type.
Once the correct point have been measured, the alignment software is used to
determine the frame relationship between the measurement system and robot
base.

Alignment to theoretical base
The advantage of aligning the robot to a theoretical base is that any errors resulting
from mounting the robot can be eliminated. Furthermore, the alignment process
details the robot accuracy at the measured points, confirming correct Absolute
Accuracy functionality. The disadvantage is that a robot program must be created
(either manually or automatically from CalibWare) and the robot measured (ideally
with correct tool however the TCP can also be calibrated as a part of this procedure.)
Once the correct point is measured, the alignment software is used to determine
the frame relationship between the measurement system and robot base.

152 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.7.3 Measure robot alignment

3.1.7.4 Frame relationships

About frame relationships
Once the relationships between the measurement system and all other cell
components are measured, the relationships between cell components can be
determined.
The relationship between the world coordinate system and the robot shall be stored
in the robot base. The relationship between the robot and the fixture shall be stored
in the workobject data type.
The measurement system is initially the active coordinate system as both world
and robot are measured relative to the measurement system.

Determine robot base
Use a standard measurement system software to determine the robot base in world
coordinates:

1 Set the world coordinate system to be active (the origin).
2 Read the coordinates of the robot base frame (now relative to the world).

The fixture relationship is similarly determined by setting the robot to be
active and reading the coordinates of the fixture frame.

Application manual - Controller software IRC5 153
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.7.4 Frame relationships

3.1.7.5 Tool calibration

About tool calibration
The Absolute Accuracy robot compensation parameters are calculated to be tool
independent. This allows any tool with a correctly pre-defined TCP to be connected
to the robot flange and used without requiring a tool re-calibration. In practice,
however, it is difficult to perform a correct TCP calibration with, for example, a
Coordinate Measurement Machine (CMM) as this does not take into account the
connection of the tool to the robot nor the tool flexibility.
Each tool should be calibrated on a regular basis to ensure optimal robot accuracy.

Tool calibration procedures
Suggested tool recalibration procedures are detailed as follows:

• SBCU (Single Beam Calibration Unit) such as the ABB BullsEye for
arc-welding or spot-welding applications.

• Geometry calibration such as the 4, 5 or 6 Point tool center point calibration
routine available in the controller. A measurement system can be used to
ensure that the single point used is accurate.

• RAPID tool calibration routines: MToolTCPCalib (calibration of TCP for moving
tool), SToolTCPCalib (calibration of TCP for stationary tool), MToolRotCalib
(calibration of rotation for moving tool), SToolRotCalib (calibration of TCP
and rotation for stationary tool.)

• Using theoretical data, for example from a CAD model.

Tip

As the tool load characteristics are used in the Absolute Accuracy models, it is
essential that all parameters be as accurate as possible. Use of Load Identification
is an efficient method of determining tool load characteristics.

154 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.1.7.5 Tool calibration

3.2 Advanced Robot Motion [687-1]

About Advanced Robot Motion
The option Advanced Robot Motion gives you access to:

• Advanced Shape Tuning, see Advanced Shape Tuning [included in 687-1]
on page 156.

• Changing Motion Process Mode from RAPID, see Motion Process Mode
[included in 687-1] on page 164.

• Wrist Move, see Wrist Move [included in 687-1] on page 172.

Application manual - Controller software IRC5 155
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.2 Advanced Robot Motion [687-1]

3.3 Advanced Shape Tuning [included in 687-1]

3.3.1 About Advanced Shape Tuning

Purpose
The purpose of Advanced Shape Tuning is to reduce the path deviation caused
by joint friction of the robot.
Advanced Shape Tuning is useful for low speed cutting (10-100 mm/s) of, for
example, small circles. Effects of robot joint friction can cause path deviation of
typically 0.5 mm in these cases. By tuning parameters of a friction model in the
controller, the path deviation can be reduced to the repeatability level of the robot,
for example, 0.1 mm for a medium sized robot.

What is included
Advanced Shape Tuning is included in the RobotWare option Advanced robot
motion and gives you access to:

• Instructions FricIdInit, FricIdEvaluate and FricIdSetFricLevels

that automatically optimize the joint friction model parameters for a
programmed path.

• The system parameters Friction FFW On, Friction FFW level and Friction
FFW Ramp for manual tuning of the joint friction parameters.

• The tune types tune_fric_lev and tune_fric_ramp that can be used
with the instruction TuneServo.

Basic approach
This is a brief description of how Advanced Shape Tuning is most commonly used:

1 Set system parameter Friction FFW On to TRUE. See System parameters
on page 161.

2 Perform automatic tuning of the joint friction levels using the instructions
FricIdInit and FricIdEvaluate. See Automatic friction tuning on
page 157.

3 Compensate for the friction using the instruction FricIdSetFricLevels.

156 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.1 About Advanced Shape Tuning

3.3.2 Automatic friction tuning

About automatic friction tuning
A robot’s joint friction levels are automatically tuned with the instructions
FricIdInit and FricIdEvaluate. These instructions will tune each joint’s
friction level for a specific sequence of movements.
The automatically tuned levels are applied for friction compensation with the
instruction FricIdSetFricLevels.

Program execution
To perform automatic tuning for a sequence of movements, the sequence must
begin with the instruction FricIdInit and end with the instruction
FricIdEvaluate. When program execution reaches FricIdEvaluate, the robot
will repeat the movement sequence until the best friction level for each joint axis
is found. Each iteration consists of a backward and a forward motion, both following
the programmed path. Typically the sequence has to be repeated approximately
20-30 times, in order to iterate to correct joint friction levels.
If the program execution is stopped in any way while the program pointer is on the
instruction FricIdEvaluate and then restarted, the results will be invalid. After
a stop, friction identification must therefore be restarted from the beginning.
Once the correct friction levels are found they have to be set with the instruction
FricIdSetFricLevels, otherwise they will not be used. Note that the friction
levels are tuned for the particular movement between FricIdInit and
FricIdEvaluate. For movements in another region in the robot’s working area,
a new tuning is needed to obtain the correct friction levels.
For a detailed description of the instructions, see Technical reference
manual - RAPID Instructions, Functions and Data types.

Limitations
There are the following limitations for friction tuning:

• Friction tuning cannot be combined with synchronized movement. That is,
SyncMoveOn is not allowed between FricIdInit and FricIdEvaluate.

• The movement sequence for which friction tuning is done must begin and
end with a finepoint. If not, finepoints will automatically be inserted during
the tuning process.

• Automatic friction tuning works only for TCP robots.
• Automatic joint friction tuning can only be done for one robot at a time.
• Tuning can be made to a maximum of 500%. If that is not enough, set a higher

value for the parameter Friction FFW Level, see Starting with an estimated
value on page 162.

• It is not possible to view any test signals with TuneMaster during automatic
friction tuning.

• The movement sequence between FricIdInit and FricIdEvaluate

cannot be longer than 10 seconds.

Continues on next page
Application manual - Controller software IRC5 157
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.2 Automatic friction tuning

Note

To use Advanced Shape Tuning, the parameter Friction FFW On must be set to
TRUE.

Example
This example shows how to program a cutting instruction that encapsulates the
friction tuning. When the instruction is run the first time, without calculated friction
parameters, the friction tuning is done. During the tuning process, the robot will
repeatedly move back and forth along the programmed path. Approximately 25
iterations are needed.
At all subsequent runs the friction levels are set to the tuned values identified in
the first run. By using the instruction CutHole, the friction can be tuned individually
for each hole.

PERS num friction_levels1{6} := [9E9,9E9,9E9,9E9,9E9,9E9];

PERS num friction_levels2{6} := [9E9,9E9,9E9,9E9,9E9,9E9];

CutHole p1,20,v50,tool1,friction_levels1;

CutHole p2,15,v50,tool1,friction_levels2;

PROC CutHole(robtarget Center, num Radius, speeddata Speed, PERS
tooldata Tool, PERS num FricLevels{*})

VAR bool DoTuning := FALSE;

IF (FricLevels{1} >= 9E9) THEN

! Variable is uninitialized, do tuning

DoTuning := TRUE;

FricIdInit;

ELSE

FricIdSetFricLevels FricLevels;

ENDIF

! Execute the move sequence

MoveC p10, p20, Speed, z0, Tool;

MoveC p30, p40, Speed, z0, Tool;

IF DoTuning THEN

FricIdEvaluate FricLevels;

ENDIF

ENDPROC

Note

A real program would include deactivating the cutting equipment before the
tuning phase.

158 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.2 Automatic friction tuning
Continued

3.3.3 Manual friction tuning

Overview
It is possible to make a manual tuning of a robot's joint friction (instead of automatic
friction tuning). The friction level for each joint can be tuned using the instruction
TuneServo. How to do this is described in this section.
There is usually no need to make changes to the friction ramp.

Note

To use Advanced Shape Tuning, the parameter Friction FFW On must be set to
TRUE.

Tune types
A tune type is used as an argument to the instruction TuneServo. For more
information, see tunetype in Technical reference manual - RAPID Instructions,
Functions and Data types.
There are two tune types that are used expressly for Advanced Shape Tuning:

DescriptionTune type

By calling the instruction TuneServo with the argument
TUNE_FRIC_LEV the friction level for a robot joint can be adjusted
during program execution. A value is given in percent (between 1
and 500) of the friction level defined by the parameter Friction FFW
Level.

TUNE_FRIC_LEV

By calling the instruction TuneServo with the argument
TUNE_FRIC_RAMP the motor shaft speed at which full friction com-
pensation is reached can be adjusted during program execution. A
value is given in percent (between 1 and 500) of the friction ramp
defined by the parameter Friction FFW Ramp.

TUNE_FRIC_RAMP

There is normally no need to tune the friction ramp.

Configure friction level
The friction level is set for each robot joint. Perform the following steps for one
joint at a time:

Action

Test the robot by running it through the most demanding parts of its tasks (the most
advanced shapes). If the robot shall be used for cutting, then test it by cutting with the
same tool as at manufacturing.

1

Observe the path deviations and test if the joint friction levels need to be increased
or decreased.

Tune the friction level with the RAPID instruction TuneServo and the tune type
TUNE_FRIC_LEV. The level is given in percent of the Friction FFW Level value.

2

Example: The instruction for increasing the friction level with 20% looks like this:
TuneServo MHA160R1, 1, 120 \Type:= TUNE_FRIC_LEV;

Repeat step 1 and 2 until you are satisfied with the path deviation.3

Continues on next page
Application manual - Controller software IRC5 159
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.3 Manual friction tuning

Action

The final tuning values can be transferred to the system parameters.4
Example: The Friction FFW Level is 0.5 and the final tune value (TUNE_FRIC_LEV) is
120%. Set Friction FFW Level to 0.6 and tune value to 100% (default value), which is
equivalent.

Tip

Tuning can be made to a maximum of 500%. If that is not enough, set a higher
value for the parameter Friction FFWLevel, seeSetting tuning system parameters
on page 162.

160 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.3 Manual friction tuning
Continued

3.3.4 System parameters

3.3.4.1 System parameters

About the system parameters
This is a brief description of each parameter in the optionAdvanced Shape Tuning.
For more information, see the respective parameter in Technical reference
manual - System parameters.

Friction Compensation / Control Parameters
These parameters belong to the type Friction Compensation in the topic Motion,
except for the robots IRB 1400 and IRB 1410 where they belong to the type Control
Parameters in the topic Motion.

DescriptionParameter

Advanced Shape Tuning is active when Friction FFW On is set to
TRUE.

Friction FFW On

Friction FFW Level is the friction level for the robot joint. See illustra-
tion below.

Friction FFW Level

Friction FFW Ramp is the speed of the robot motor shaft, at which
the friction has reached the friction level defined by Friction FFW
Level. See illustration below.

Friction FFW Ramp

There is normally no need to make changes to Friction FFW Ramp.

Illustration

en0900000117

Application manual - Controller software IRC5 161
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.4.1 System parameters

3.3.4.2 Setting tuning system parameters

Automatic tuning rarely requires changes in system parameters
For automatic tuning, if the friction levels are saved in a persistent array, the tuning
is maintained after a power failure. The automatic tuning can also be used to set
different tuning levels for different robot movement sequences, which cannot be
achieved with system parameters. When using automatic tuning, there is no need
to change the system parameters unless the default values are very much off, see
Starting with an estimated value on page 162.

Transfer tuning to system parameters
When using manual tuning, the tuning values are reset to default (100%) at power
failure. System parameter settings are, however, permanent.
If a temporary tuning is made, that is only valid for a part of the program execution,
it should not be transferred.
To transfer the friction level tuning value (TUNE_FRIC_LEV) to the parameter
Friction FFW Level follow these steps:

Action

In RobotStudio, open the Configuration Editor, Motion topic, and select the type
Friction comp (except for the robots IRB 1400 and IRB 1410 where they belong to the
type Control parameters).

1

Multiply Friction FFW Level with the tuning value. Set this value as the new Friction
FFW Level and set the tuning value (TUNE_FRIC_LEV) to 100%.

2

Example: The Friction FFW Level is 0.5 and the final tune value (TUNE_FRIC_LEV) is
120%. Set Friction FFW Level to 0.6 (1.20x0.5) and the tuning value to 100% (default
value), which is equivalent.

Restart the controller for the changes to take effect.3

Starting with an estimated value
The parameter Friction FFW Level will be the starting value for the tuning. If this
value is very far from the correct value, tuning to the correct value might be
impossible. This is unlikely to happen, since Friction FFW Level is by default set
to a value approximately correct for most situations.
If the Friction FFW Level value, for some reason, is too far from the correct value,
it can be changed to an new estimated value.

Action

In RobotStudio, open the Configuration Editor, Motion topic, and select the type
Friction comp (except for the robots IRB 1400 and IRB 1410 where they belong to the
type Control parameters).

1

Set the parameter Friction FFW Level to an estimated value. Do not set the value 0
(zero), because that will make tuning impossible.

2

Restart the controller for the changes to take effect.3

162 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.4.2 Setting tuning system parameters

3.3.5 RAPID components

About the RAPID components
This is an overview of all instructions, functions, and data types in Advanced Shape
Tuning.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types.

Instructions

DescriptionInstructions

Initiate friction identificationFricIdInit

Evaluate friction identificationFricIdEvaluate

Set friction levels after friction identificationFricIdSetFricLevels

Functions
Advanced Shape Tuning includes no functions.

Data types
Advanced Shape Tuning includes no data types.

Application manual - Controller software IRC5 163
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.3.5 RAPID components

3.4 Motion Process Mode [included in 687-1]

3.4.1 About Motion Process Mode

Purpose
The purpose of Motion Process Mode is to simplify application specific tuning, i.e.
to optimize the performance of the robot for a specific application.
For most applications the default mode is the best choice.

Available motion process modes
A motion process mode consists of a specific set of tuning parameters for a robot.
Each tuning parameter set, that is each mode, optimizes the robot tuning for a
specific class of applications.
There following modes are predefined:

• Optimal cycle time mode – this mode gives the shortest possible cycle time
and is normally the default mode.

• Accuracy mode – this mode improves path accuracy. The cycle time will be
slightly increased compared to Optimal cycle time mode. This is the
recommended choice for improving path accuracy on small and medium size
robots, for example IRB 2400 and IRB 2600.

• Low speed accuracy mode – this mode improves path accuracy. The cycle
time will be slightly increased compared to Accuracy mode. This is the
recommended choice for improving path accuracy on large size robots, for
example IRB 4600.

• Low speed stiff mode - this mode is recommended for contact applications
where maximum servo stiffness is important. Could also be used in some
low speed applications, where a minimum of path vibrations is desired. The
cycle time will be increased compared to Low speed accuracy mode.

• Press tending mode – Changes the Kv Factor, Kp Factor and Ti Factor in
order to mitigate tool vibrations. This mode is primarily intended for use in
press tending applications where flexible grippers with a large extension in
the y-direction are used.

There are also four modes available for application specific user tuning:
• MPM User mode 1 – 4

Selection of mode
The default mode is automatically selected and can be changed by changing the
system parameter Use Motion Process Mode for type Robot.
Changing the Motion Process Mode from RAPID is only possible if the option
Advanced Robot Motion is installed. The mode can only be changed when the
robot is standing still, otherwise a fine point is enforced.
The following example shows a typical use of the RAPID instruction
MotionProcessModeSet.

MotionProcessModeSet OPTIMAL_CYCLE_TIME_MODE;

! Do cycle-time critical movement

Continues on next page
164 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.1 About Motion Process Mode

MoveL *, vmax, ...;

...

MotionProcessModeSet ACCURACY_MODE;

! Do cutting with high accuracy

MoveL *, v50, ...;

...

Limitations
• The Motion Process Mode concept is currently available for all six- and

seven-axes robots except paint robots with TrueMove1.
• The Mounting Stiffness Factor parameters are only available for the following

robots:
IRB 120, IRB 140, IRB 1200, IRB 1520, IRB 1600, IRB 2600, IRB 4600, IRB
6620 (not LX), IRB 6640, IRB 6700.

• For IRB 1410, only the Accset and the geometric accuracy parameters are
available.

• The following robot models do not support the use of World Acc Factor (i.e.
only World Acc Factor = -1 is allowed):
IRB 340, IRB 360, IRB 540, IRB 1400, IRB 1410

Application manual - Controller software IRC5 165
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.1 About Motion Process Mode

Continued

3.4.2 User-defined modes

Available tune parameters
If a more specific tuning is needed, some tuning parameters can be modified in
each motion process mode. The predefined modes and the user modes can all be
modified. In this way, the user can create a specific tuning for a specific application.
The following list contains a short description of the available tune parameters.

• Use Motion Process Mode Type - selects predefined parameters for a user
mode.

• Accset Acc Factor – changes acceleration
• Accset Ramp Factor – changes acceleration ramp
• Accset Fine Point Ramp Factor – changes deceleration ramp in fine points
• Joint Acc Factor - changes acceleration for a specific joint.
• World Acc Factor - activates dynamic world acceleration limitation if positive,

typical value is 1, deactivated if -1.
• Geometric Accuracy Factor - improves geometric accuracy if reduced.
• Dh Factor – changes path smoothness (effective system bandwidth)
• Df Factor – changes the predicted resonance frequency for a particular axis
• Kp Factor – changes the equivalent gain of the position controller for a

particular axis
• Kv Factor – changes the equivalent gain of the speed controller for a particular

axis
• Ti Factor – changes the integral time of the controller for a particular axis
• Mounting Stiffness Factor X – describes the stiffness of the robot foundation

in x direction
• Mounting Stiffness Factor Y – describes the stiffness of the robot foundation

in y direction
• Mounting Stiffness Factor Z – describes the stiffness of the robot foundation

in z direction
For a detailed description, see Motion Process Mode in Technical reference
manual - System parameters.

Tuning parameters from RAPID
Most parameters can also be changed using the TuneServo and AccSet

instructions.

Note

All parameter settings are relative adjustments of the predefined parameter
values. Although it is possible to combine the use of motion process modes and
TuneServo/Accset instructions, it is recommended to choose either motion
process modes or TuneServo/AccSet.

Continues on next page
166 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.2 User-defined modes

Example 1
Relative adjustment of acceleration = [Predefined AccSet Acc Factor] * [AccSet
Acc Factor] * [AccSet instruction acceleration factor / 100]

Example 2
Relative adjustment of Kv = [Predefined Kv Factor] * [Kv Factor] * [Tune value of
TuneServo(TYPE_KV) instruction / 100]

Predefined parameter values
The predefined parameter values for each mode varies for different robot types.
Generally, all predefined parameters are set to 1.0 for Optimal cycle time mode.
For Low speed accuracy mode and Low speed stiff mode, the AccSet and Dh
parameters are lowered for a smoother movement and a more accurate path, and
the Kv Factor, Kp Factor, and Ti Factor are changed for higher servo stiffness.
For some robots, it might not be possible to increase the Kv Factor in Low speed
accuracy mode and Low speed stiff mode. Always be careful and be observant for
increased motor noise level when adjustingKv Factor and do not use higher values
than needed for fulfilling the application requirement. A Kp Factor which is too
high, or a Ti Factor which is too low, can also increase vibrations due to mechanical
resonances.
Accuracy Mode uses a dynamic world acceleration limitation (World Acc Factor)
and increased geometric accuracy (Geometric Accuracy Factor) to improve the
path accuracy.
The Df Factor and the Mounting Stiffness Factors are always set to 1.0 in the
predefined modes, since the optimal values of these parameters depends the
specific installation, for example, the stiffness of the foundation on which the robot
is mounted. These parameters can be optimized using TuneMaster. More
information can be found in the TuneMaster application. Also note the limitations
of Mounting Stiffness Factor.

WARNING

Incorrect setting of the Motion Process Mode parameters can cause oscillating
movements or torques that can damage the robot.

Application manual - Controller software IRC5 167
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.2 User-defined modes

Continued

3.4.3 General information about robot tuning

Minimizing cycle time
For best possible cycle time, the motion process mode Optimal cycle time mode
should be used. This mode is normally the default mode. The user only needs to
define the tool load, payload, and arm loads if any. Once the robot path has been
programmed, the ABB QuickMove motion technology automatically computes the
optimal accelerations and speeds along the path. This results in a time-optimal
path with the shortest possible cycle time. Hence, no tuning of acceleration is
needed. The only way to improve the cycle time is to change the geometry of the
path or to work in another region of the work space. This type of optimization, if
needed, can be performed by simulation in RobotStudio.

Increasing path accuracy and reducing vibrations
For most applications, the Optimal cycle time mode will result in a satisfactory
behavior in terms of path accuracy and vibrations. This is due to the ABB TrueMove
motion technology. However, there are applications where the accuracy needs to
be improved by modifying the tuning of the robot. This tuning has previously been
performed by using the TuneServo and AccSet instructions in the RAPID program.
The concept of motion process modes will simplify this application specific tuning
and the four predefined modes should be useful in many cases with no further
adjustments needed.
Here follows some general advice for solving accuracy problems, assuming that
the default choice Optimal cycle time mode has been tested and that accuracy
problems have been noticed:

1 Verify that tool load, payload, and arm loads are properly defined.
2 Inspect tool and process equipment attached to the robot arms. Make sure

that everything is properly fastened and that rigidity of the tool is adequate.
3 Inspect the foundation on which the robot is mounted, see Compensating

for foundation flexibility on page 168.

Compensating for foundation flexibility
If the foundation does not fulfill the stiffness requirement of the robot product
manual, then the foundation flexibility should be compensated for. See section
Requirements on foundation, Minimum resonance frequency in the robot product
manual.
This is performed by Df Factor for axis 1 and 2 or Mounting Stiffness Factor
depending on robot type, see Limitations on page 171.

Continues on next page
168 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.3 General information about robot tuning

TuneMaster is used for finding the optimal value of Df Factor / Mounting Stiffness
Factor. The obtained Df Factor / Mounting Stiffness Factor is then defined for the
Motion Process Modes used.

Note

A foundation that does not fulfill the requirements always impairs the accuracy
to some extent, even if the described compensation is used. If the foundation
rigidity is very low, there might not be possible to solve the problem using Df
Factor / Mounting Stiffness Factor.
In this case, the foundation must be improved or any of the solutions below used,
for example, Optimal cycle time mode with a low Dh Factor, Accset Acc Factor,
or Accset Fine Point Ramp Factor depending on the application.

WARNING

Incorrect tuning for a very low mounting stiffness can cause oscillating
movements or torques that can damage the robot.

If accuracy still needs to be improved
• For applications with high demands on path accuracy, for example cutting,

Advanced Shape Tuning and Accuracy mode/Low speed accuracy mode
should be used. The choice of motion mode depends both on the robot type
and the specific application. In general, Accuracy mode is recommended for
small and medium size robots (up to IRB 2400/2600) and Low speed accuracy
mode is recommended for larger robots.

• If the path accuracy still needs improvement, the accuracy modes can be
adjusted with the tune parameters, some examples:

- Tuning of Accuracy mode for improved accuracy:
1) Reduce World Acc Factor, for example from 1 to 0.5.
2) Reduce Dh Factor to 0.5 or lower. Note that a low value of Dh factor
can change the corner zones at high speed.

- Tuning of Low speed accuracy mode for improved accuracy:
1) Set World Acc Factor to 1, and set Geometric Accuracy Factor to
0.1.
2) Reduce Dh Factor to 0.5 or lower.

• The programmed speed must sometimes be reduced for best possible
accuracy, e.g. in cutting applications. For example, a circle with radius 1 mm
should not be programmed with a higher speed than 20 mm/s.

• For contact applications, for example milling and pre-machining, Low speed
stiff mode is recommended. This mode can also be useful for large robots
in some low speed applications (up to 100 mm/s) where a minimum of path
vibrations is required, for example below 0.1 mm. Note that this mode has a
very stiff servo tuning and that there may be cases where the Kv Factor
needs to be reduced due to motor vibrations and noise.

Continues on next page
Application manual - Controller software IRC5 169
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.3 General information about robot tuning

Continued

• If overshoots and vibrations in fine points needs to be reduced. Use Optimal
cycle time mode and decrease the value of Accset Fine Point Ramp Factor
or Dh Factor until the problem is solved.

• If accuracy problems occur when starting or ending reorientation. Define a
new zone with increased pzone_ori and pzone_eax. These should always
have the same value, even if there are no external axes in the system. Also
increase zone_ori. Always strive for smooth reorientations when
programming.

• Finally, if the cycle time needs to be reduced after the tuning for accuracy is
finished. Use different motion process modes in different sections of the
RAPID program.

170 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.3 General information about robot tuning
Continued

3.4.4 Additional information

Motion Process Mode compared to TuneServo and AccSet
Motion process modes simplifies application specific tuning and makes it possible
to define the tuning by system parameters instead of the RAPID program.
In general, motion process modes should be the first choice for solving accuracy
problems. However, application specific tuning can still be performed using the
TuneServo and AccSet instructions in the RAPID program.
There are a few situations where TuneServo and AccSetmight be a better choice.
One example of this is if an acceleration reduction in a section of the RAPID
program solves the accuracy problem and the cycle time is to be optimized. In this
case it might be better to use AccSet which can be changed without fine point
whereas change of motion process mode requires a fine point.

Limitations
• The Motion Process Mode concept is currently available for all six- and

seven-axes robots except paint robots.
• The Mounting Stiffness Factor parameters are only available for the following

robots:
IRB 120, IRB 140, IRB 1200, IRB 1520, IRB 1600, IRB 2600, IRB 4600, IRB
6620 (not LX), IRB 6640, IRB 6700.

• For IRB 1410, only the Accset and the geometric accuracy parameters are
available.

• The following robot models do not support the use of World Acc Factor (i.e.
only World Acc Factor = -1 is allowed):
IRB 340, IRB 360, IRB 540, IRB 1400, IRB 1410

Related information

SeeFor information about

Technical referencemanual - System paramet-
ers

Configuration of Motion Process Mode
parameters.

Technical reference manual - RAPID Instruc-
tions, Functions and Data types

RAPID instructions:
• AccSet - Reduces the acceleration
• MotionProcessModeSet - Set mo-

tion process mode
• TuneServo - Tuning servos

Application manual - Controller software IRC5 171
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.4.4 Additional information

3.5 Wrist Move [included in 687-1]

3.5.1 Introduction to Wrist Move

Purpose
The purpose ofWrist Move is to improve the path accuracy when cutting geometries
with small dimensions. For geometrical shapes like small holes, friction effects
from the main axes (1-3) of the robot often degrade the visual appearance of the
shape. The key idea is that instead of controlling the robot's TCP, a wrist movement
controls the point of intersection between the laser beam (or water jet or routing
spindle, etc) and the cutting plane. For controlling the point of intersection, only
two wrist axes are needed. Instead of using all axes of the robot, only two wrist
axes are used, thereby minimizing the friction effects on the path. Which wrist axis
pair to be used is decided by the programmer.

Using Wrist Move
Wrist Move is included in the RobotWare option Advanced robot motion.
Wrist Move is used together with the RAPID instruction CirPathMode and
movement instructions for circular arcs, that is, MoveC, TrigC, CapC etc. The wrist
movement mode is activated by the instruction CirPathMode together with one
of the flags Wrist45, Wrist46, or Wrist56. With this mode activated, all
subsequent MoveC instructions will result in a wrist movement. To go back to
normal MoveC behavior, then CirPathMode has to be set with a flag other than
Wrist45, Wrist46, and Wrist56, for example, PathFrame.

Note

During a wrist movement, the TCP height above the surface will vary. This is an
unavoidable consequence of using only two axes. The height variation will depend
on the robot position, the tool definition, and the radius of the circular arc. The
larger the radius, the larger the height variation will be. Due to the height variation
it is recommended that the movement is run at a very low speed the first time to
verify that the height variation does not become too large. Otherwise it is possible
that the cutting tool collides with the surface being cut.

Limitations
The Wrist Move option cannot be used if:

• The work object is moving
• The robot is mounted on a track or another manipulator that is moving

The Wrist Move option is only supported for robots running QuickMove, second
generation.
The tool will not remain at right angle against the surface during the cutting. As a
consequence, the holes cut with this method will be slightly conical. Usually this
will not be a problem for thin plates, but for thick plates the conicity will become
apparent.

Continues on next page
172 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.1 Introduction to Wrist Move

The height of the TCP above the surface will vary during the cut. The height variation
will increase with the size of the shape being cut. What limits the possible size of
the shape are therefore, beside risk of collision, process characteristics like focal
length of the laser beam or the water jet.
WristMove cannot be used on robots with non-spherical wrist, for example, GoFa
or YuMi

Application manual - Controller software IRC5 173
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.1 Introduction to Wrist Move

Continued

3.5.2 Cut plane frame

Defining the cut plane frame
Crucial to the wrist movement concept is the definition of the cut plane frame. This
frame provides information about position and orientation of the object surface.
The cut plane frame is defined by the robot's starting position when executing a
MoveC instruction. The frame is defined to be equal to the tool frame at the starting
position. Note that for a sequence of MoveC instructions, the cut plane frame stays
the same during the whole sequence.

Illustration, cut plane
The left illustration shows how the cut plane is defined, and the right illustration
shows the tool- and cut plane frames during cutting.

en0900000118

Prerequisites
Due to the way the cut plane frame is defined, the following must be fulfilled at the
starting position:

• The tool must be at right angle to the surface
• The z-axis of the tool must coincide with the laser beam or water jet
• The TCP must be as close to the surface as possible

If the first two requirements are not fulfilled, then the shape of the cut contour will
be affected. For example, a circular hole would look more like an ellipse. The third
requirement is normally easy to fulfill as the TCP is often defined to be a few mm
in front of, for example, the nozzle of a water jet. However, if the third requirement
is not fulfilled, then it will only affect the radius of the resulting circle arc. That is,
the radius of the cut arc will not agree with the programmed radius. For a linear
segment, the length will be affected.

Tip

In the jog window of the FlexPendant there is a button for automatic alignment
of the tool against a chosen coordinate frame. This functionality can be used to
ensure that the tool is at a right angle against the surface when starting the wrist
movement.

Continues on next page
174 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.2 Cut plane frame

Tip

Wrist movement is not limited to circular arcs only: If the targets of MoveC are
collinear, then a straight line will be achieved.

Application manual - Controller software IRC5 175
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.2 Cut plane frame

Continued

3.5.3 RAPID components

Instruction
This is a brief description of the instruction used in Wrist Move. For more
information, see the description of the instruction in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionsInstruction

CirPathMode makes it possible to select different modes to
reorientate the tool during circular movements.

CirPathMode

The arguments Wrist45, Wrist46, and Wrist56 are used
specifically for the Wrist Move option.

176 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.3 RAPID components

3.5.4 RAPID code, examples

Basic example
This example shows how to do two circular arcs, first using axes 4 and 5, and then
using axes 5 and 6. After the two arcs, wrist movement is deactivated by
CirPathMode.

! This position will define the cut plane frame

MoveJ p10, v100, fine, tWaterJet;

CirPathMode \Wrist45;

MoveC p20, p30, v50, z0, tWaterJet;

! The cut-plane frame remains the same in a sequence of MoveC

CirPathMode \Wrist56;

MoveC p40, p50, v50, fine, tWaterJet;

! Deactivate Wrist Movement, could use \ObjectFrame

! or \CirPointOri as well

CirPathMode \PathFrame;

Advanced example
This example shows how to cut a slot with end radius R and length L+2R, using
wrist movement. See Illustration, pSlot and wSlot on page 178. The slot both
begins and ends at the position pSlot, which is the center of the left semi-circle.
To avoid introducing oscillations in the robot, the cut begins and ends with
semi-circular lead-in and lead-out paths that connect smoothly to the slot contour.
All coordinates are given relative the work object wSlot.

! Set the dimensions of the slot

R := 5;

L := 30;

! This position defines the cut plane frame, it must be normal

! to the surface

MoveJ pSlot, v100, z1, tLaser, \wobj := wSlot;

CirPathMode \Wrist45;

! Lead-in curve

MoveC Offs(pSlot, R/2, R/2, 0), Offs(pSlot, 0, R, 0), v50, z0,
tLaser, \wobj := wSlot;

! Left semi-circle

MoveC Offs(pSlot, -R, 0, 0), Offs(pSlot, 0, -R, 0), v50, z0, tLaser,
\wobj := wSlot;

! Lower straight line, circle point passes through the mid-point

! of the line

MoveC Offs(pSlot, L/2, -R, 0), Offs(pSlot, L, -R, 0), v50, z0,
tLaser, \wobj := wSlot;

Continues on next page
Application manual - Controller software IRC5 177
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.4 RAPID code, examples

! Right semi-circle

MoveC Offs(pSlot, L+R, 0, 0), Offs(pSlot, L, R, 0), v50, z0, tLaser,
\wobj := wSlot;

! Upper straight line, circle point passes through the mid-point

! of the line

MoveC Offs(pSlot, L/2, R, 0), Offs(pSlot, 0, R, 0), v50, z0, tLaser,
\wobj := wSlot;

! Lead-out curve back to the starting point

MoveC Offs(pSlot, -R/2, R/2, 0), pSlot, v50, z1, tLaser, \wobj :=
wSlot;

Deactivate Wrist Movement

CirPathMode \ObjectFrame;

Illustration, pSlot and wSlot

wSlot

pSlot

xx0900000111

178 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.4 RAPID code, examples
Continued

3.5.5 Troubleshooting

Unexpected cut shape
If the cut shape is not the expected, then check the following:

• The tool z-axis coincides with the laser beam or the water jet
• The tool z-axis is at right angle to the surface at the starting position of the

first MoveC
• If you have the option Advanced Shape Tuning, then try tuning the friction

for the involved wrist axes.

Mismatching radius
If the radius of the circular arc does not agree with the programmed radius, then
check that the TCP is as close to the surface as possible at the starting position.

Impossible movement with chosen axis pair
If the movement is not possible with the selected axis pair, then try activating
another pair by using one of the flags Wrist45, Wrist46, or Wrist56. As a last
resort, try reaching the starting position with another robot configuration.

Application manual - Controller software IRC5 179
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

3 Motion performance
3.5.5 Troubleshooting

This page is intentionally left blank

4 Motion coordination
4.1 Machine Synchronization [607-1], [607-2]

4.1.1 Overview

Two options
Machine Synchronization consists of two options, Sensor Synchronization and
Analog Synchronization. The functionality is very similar for both these options, it
is the hardware and configuration that differs.
The difference between the two options is that:

• Analog Synchronization is used together with a sensor that shows the position
of the external mechanical unit as an analog signal.

• Sensor Synchronization requires an encoder that counts pulses as the
external mechanical unit move, and an encoder interface unit which
transforms the pulses into a sensor position.

All information in this chapter refers to both options, unless something else is
specified. The term synchronization option refers to both options. Information that
is only valid for one of the options is said to be specific for Sensor Synchronization
or Analog Synchronization.

Purpose
The synchronization option adjusts the robot speed to an external moving device
(for example a press or conveyor) with the help of a sensor. It can also be used to
synchronize two robots with each other.

Description
For the synchronization, a sensor is used to detect the movements of a press door,
conveyor, turn table or similar device. The speed of the robot TCP will be adjusted
in correlation to the sensor output, so that the robot will reach its programmed
target at the same time as the external device reaches its programmed position.
The synchronization with the external device does not affect the path of the robot
TCP, but it affects the speed at which the robot moves along this path.

Functionality
The external device connected to the sensor cannot be controlled by the robot
controller. However, in some ways it has similarities with a mechanical unit
controlled by the robot controller:

• the sensor positions appears in the Jogging Window on the FlexPendant
• the sensor positions appears in the robtarget when a MODPOS operation

is performed
• the mechanical unit may be activated, and deactivated

Continues on next page
Application manual - Controller software IRC5 181
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.1 Overview

Basic approach
This is the general approach for setting up the synchronization option. For a more
detailed description of how this is done, see the respective section.

• Install and connect hardware.
• Install the synchronization software.
• Configure the system parameters.
• Write a program that connects to the sensor and uses synchronization for

robot movements (or a program for a master/slave robot application).

182 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.1 Overview
Continued

4.1.2 What is needed

Sensor Synchronisation
The Sensor Synchronization application consist of the following components:

A

B

C

D E

F

en0400000655

External device that dictates the robot speed, e.g. a press doorA

Synchronization switchB

EncoderC

Encoder interface unit (DSQC 377)D

ControllerE

RobotF

Act as a sensor, giving input to the controllerB+C+D

Continues on next page
Application manual - Controller software IRC5 183
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.2 What is needed

Analog Synchronization
The Analog Synchronization application consist of the following components:

xx0700000431

Mold press that dictates the robot speedA

Analog sensor for press positionB

ControllerC

RobotD

184 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.2 What is needed
Continued

4.1.3 Synchronization features

Features
The synchronization option provides the following features:

DescriptionFeature

In Auto operation at constant sensor speed, the Tool Center Point (TCP)
of the robot will stay within the programmed position corresponding to
the sensor, with an error margin of:

• +/- 50 ms for Sensor Synchronization
• +/- 100 ms for Analog Synchronization

This is valid as long as the robot is within its dynamic limits with the added
sensor motion. This figure depends on the calibration of the robot and
sensor and is applicable for linear synchronization only.

Accuracy

Only for Sensor Synchronization:Object queue
Each time the external device trigger the synchronization switch, a sensor
object is created in the object queue. The encoder interface unit will
maintain the object queue, although for Sensor Synchronization the queue
normally does not contain more than one object.

A RAPID program has access to the current position and speed of the
external device, via the sensor.

RAPID access
to sensor data

Up to 2 sensors are supported.Multiple
sensors For Sensor Synchronization, each sensor must have a DSQC 377.

Application manual - Controller software IRC5 185
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.3 Synchronization features

4.1.4 General description of the synchronization process

Example with a press
This example shows the very basic steps when synchronization is used for material
handling for a press.

Then...When...

a signal from the robot controller (or PLC) orders the press to
start.

the press is closed and
ready to start

For Sensor Synchronization, the synchronization switch is
triggered and a sensor object is created in the object queue.
The robot connects to the object.

the press starts open

For both Sensor Synchronization and Analog Synchronization,
the robot moves, synchronized with the press, towards the
press and reaches it when the press is open enough.

the robot places (or removes) a work piece in the press. The
synchronization is ended.

the press is open enough
for the robot to enter

For Sensor Synchronization, the sensor object is then dropped
(removed from the object queue).

186 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.4 General description of the synchronization process

4.1.5 Limitations

Limitations on additional axes
Each sensor is considered an additional axis. Thus the system limitation of 6 active
additional axes must be reduced by the number of active and installed sensors.
The first installed sensor will use measurement node 6 and the second sensor will
use measurement node 5. These measurement nodes are not available for additional
axes and no resolvers should be connected to these nodes on any additional axes
measurement boards.

Object queue lost on warm start or power failure
Only for Sensor Synchronization:
The object queue is kept on the encoder interface unit (DSQC 377). If the system
is restarted or if the power supply to either the controller or the encoder interface
unit fails, then the object queue will be lost.

Minimum speed
In order to maintain a smooth and accurate motion, there is a minimum speed of
the external device that is detected. The device is considered to be still if its
movement is slower than the minimum speed. This speed depends on the selection
of encoder. It can vary from 4mm/s - 8mm/s.

Maximum speed
There is no determined maximum speed for the external device. Accuracy will
decrease at speeds over those specified, and the robot will no longer be able to
follow the sensor at very high sensor speeds (>1000mm/s) or with robot dynamic
limitations.

Compatibility with the option Conveyor Tracking
If both Machine Synchronization and Conveyor Tracking options are installed, only
one of the mechanical units SSYNC1 and CNV2 should be active at the same time.
For Machine Synchronization (Sensor Synchronization or Analog Synchronization),
CNV2 must be deactivated.
For Conveyor Tracking, SSYNC1 must be deactivated.

Application manual - Controller software IRC5 187
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.5 Limitations

4.1.6 Hardware installation for Sensor Synchronization

4.1.6.1 Encoder specification

Two phase type
The encoder must be of two phase type for quadrature pulses, to enable registration
of reverse sensor motion, and to avoid false counts due to vibration etc. when the
sensor is not moving.

Technical data

Open collector PNP outputOutput signal:

10 - 30 V (normally supplied by 24 VDC from encoder interface unit)Voltage:

50 - 100 mACurrent:

2 phase with 90 degree phase shiftPhase:

50%Duty cycle:

20 kHzMax. frequency:

Example encoder
An example of an encoder that fills these criteria, is the Lenord & Bauer GEL 262.

188 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.6.1 Encoder specification

4.1.6.2 Encoder description

Overview
The encoder provides a series of pulses indicating the motion detected by the
sensor. This is used to synchronize the motion between the robot and the external
device.

Pulse channels
The encoder has two pulse channels, A and B which differ in phase by 90°. Each
channel will send a fixed number of pulses per revolution depending on the
construction of the encoder.

• The number of pulses per revolution for the encoder must be selected in
relation to the gear reduction between the moving devices.

• The pulse ratio from the encoder should be in the range of 1250 - 2500 pulses
per meter of sensor motion.

• The pulses from channel A and B are used in quadrature to multiply the pulse
ratio by four to get counts.

This means that the control software will measure 5000 - 10000 counts per meter
for an encoder with the pulse ratio 1250 - 2500.

en0300000556

Synchronization
To get an accurate synchronization, the movements of the external device must
remain within some limits relative to robot movements. For every meter the robot
moves, the external device movement must be between 0.2 and 5 meters (or
radians).

Application manual - Controller software IRC5 189
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.6.2 Encoder description

4.1.6.3 Installation recommendations

Overview
The encoder must be installed in such a way that it gives precise feedback of the
sensor output (reflects the true motion of the external device). This means that the
encoder should be installed as close to the robot as practically possible, no further
away than 30 meters.
The encoder is normally installed on the drive unit of the external device. The
encoder may be connected to an output shaft on the drive unit, directly or via a
gear belt arrangement.

Note

The encoder is a sensitive measuring device and for that reason it is important
that no other forces than the shaft rotation are transferred from the sensor to the
encoder and that the encoder is mounted using shock absorbers etc. to prevent
damage from vibration.

Placement
The following is to be considered before start-up

Then...If...

the encoder must be connected on the sensor side of the
clutch.

the drive unit includes a
clutch arrangement

it is important to install a specially designed flexible coupling
to prevent applying mechanical forces to the encoder rotor..

the encoder is connected
directly to a drive unit shaft

the moving device itself may be a source of inaccuracy as
the moving device will stretch or flex over the distance from
the drive unit to the encoder cell. In such a case it may be
better to mount the encoder closer to the drive unit with a
different coupling arrangement.

the drive unit of the external
device is located far away
from the encoder

190 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.6.3 Installation recommendations

4.1.6.4 Connecting encoder and encoder interface unit

Overview
If the cable from the robot to the encoder is too long, the inductance in the cable
will produce spike pulses on the encoder signal. This signal will over a period of
time damage the opto couplers in the encoder interface unit.
See Product manual - IRC5 for details on connecting to the encoder interface unit.

Reduce noise
To reduce noise, connect the encoder with a screened cable.

Reduce spike pulses
To reduce spike pulses, install a capacitor between the signal wire and ground for
each of the two phases. The correct capacitance value can be determined by
viewing the encoder signal on an oscilloscope.
The capacitor:

• should be connected on the terminal board where the encoder is connected.
• values are 100 nF - 1 µF, depending on the length of the cable.

Encoder power supply
The encoder is normally supplied with 24 VDC from the encoder interface unit.
When connecting two encoder interface units to the same encoder, let only one of
the encoder interface units supply power to the encoder. If both encoder interface
units supply power, a diode must be installed on each of the 24 V DC connections
to make sure the power supplies do not interfere with each other.

Connecting encoder and the synchronization switch
The following procedure describes how to install the encoder and the
synchronization switch to the encoder interface unit.

• One encoder can be connected to several encoder interface units.
• each controller must have an encoder interface unit if more than one robot

is to use the sensor.

IllustrationAction

en0300000611

Connect the encoder to the encoder interface
unit (DSQC 377) on the controller.

1

Continues on next page
Application manual - Controller software IRC5 191
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.6.4 Connecting encoder and encoder interface unit

IllustrationAction

Connect the synchronization switch to the en-
coder interface unit (DSQC 377) on the control-
ler.

2

Finding the Encoder rotating direction
The following procedure describes how to find the encoder rotating direction.

IllustrationAction

On the FlexPendant, tap Inputs and Outputs.1

Tap View and select I/O Units2

Scroll down and selected Qtrack - d3773

Scroll down to c1position4

Encoder 1

+2-AX12

29

17

19

20

21

22

P_ENC1_A+

P_ENC1_A–

P_ENC1_B+

P_ENC1_B–

0 Volt

+24 VDC

30

18

23

24

25

26

Connection for PNP encoder

B (90°)

A (0°)

0V

24VDC

Encoder 2

P_ENC2_A+

P_ENC2_A–

P_ENC2_B+

P_ENC2_B–

0 Volt

+24 VDC

B (90°)

A (0°)

0V

24VDC

en0300000584

Run the encoder in forward direction while
checking the value for C1Position.
If the number counts up:

• No action is required.
If the number counts down:

• the connection of the two encoder faces
(0° and 90°) must be interchanged.

5

192 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.6.4 Connecting encoder and encoder interface unit
Continued

4.1.7 Hardware installation for Analog Synchronization

4.1.7.1 Required hardware

Analog input board
An analog input board is required, for example DSQC355A. See Application
manual - DeviceNet Master/Slave.

Analog linear sensor
An analog linear sensor is required, with analog signal input between 0 and 10 V.

Application manual - Controller software IRC5 193
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.7.1 Required hardware

4.1.8 Software installation

4.1.8.1 Sensor installation

Overview
Normally the synchronization option and the DeviceNet option are preloaded at
ABB, and do not need to be re-installed. For more information on how to add options
to the system, see Operating manual - RobotStudio.
The synchronization option automatically installs one sensor into the system
parameters. To add more than one sensor, see Installation of several sensors on
page 197.

About the installation
The options will install three additional configurations:

• I/O for the encoder interface unit (only for Sensor Synchronization)
• Sensor process description
• Motion mechanical description

Configuration of the default installation for Sensor Synchronization
This procedure describes how to configure system parameters for Sensor
Synchronization in the configuration editor in RobotStudio.

Action

Change the parameter Connected to Bus for the unit from "Virtual1" to the correct
bus, for example "DeviceNet1".

1

Specify the correct address for the unit, parameter DeviceNet Address.2

If the parameter DeviceNet Master Address (in topic I/O, type Bus) is changed, then
the parameterDefault Value (in topic I/O, type Fieldbus Command Type) for the instance
TimeKeeperInit must be changed to the same value.

3

Configuration of the default installation for Analog Synchronization
This procedure describes how to configure system parameters for Analog
Synchronization in the configuration editor in RobotStudio.

Action

Change the unit type, parameter Type of Unit, for the unit from "Virtual" to the correct
unit type, for example "d355A".

1

Change the parameter Connected to Bus for the unit from "Virtual1" to the correct
bus, for example "DeviceNet1".

2

Specify the correct address for the unit, parameter DeviceNet Address.3

Change the communication interval for the unit type (e.g d355A) from 50 to 20 ms,
parameter Connection 1 Interval.

4

For more information about this parameter, see Application manual - DeviceNet Mas-
ter/Slave.

Continues on next page
194 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.8.1 Sensor installation

How to add a sensor manually for Sensor Synchronization
Use the following procedure to add a sensor manually.

Action

Connect the encoder interface unit to the CAN bus. Note the address on the CAN bus.1

In RobotStudio, click Load Parameters.2

Select: Load Parameters if no duplicates and click Open.3

Installation of a master sensor, connected to DeviceNet1 (first board).4
Load the following files one by one from the OPTIONS/CNV directory:

• syvm1_eio.cfg
• syvm1_prc.cfg
• syvm1_moc.cfg

Installation of a slave sensor, connected to DeviceNet2 (second board).5
Load the following files one by one from the OPTIONS/CNV directory:

• syvs1_eio.cfg
• syvs1_prc.cfg
• syvs1_moc.cfg

Restart the system.6

If necessary, correct the address for the new encoder interface units. The default ad-
dresses in the file syvxx_eio.cfg should be replaced by the actual address of the
board.

7

How to add a sensor manually for Analog Synchronization
There are no prepared files for adding a sensor for Analog Synchronization. It can
be accomplished by copying the following files and edit them for the second sensor:

• synvaileio.cfg
• synvailprc.cfg
• syim1.moc

Application manual - Controller software IRC5 195
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.8.1 Sensor installation

Continued

4.1.8.2 Reloading saved Motion parameters

Overview
During installation of the synchronization option, a specific sensor configuration
for additional axes will be loaded into the Motion system parameters.

Note

If these parameters were loaded before the synchronization option, then the
mechanical unit SSYNC1 will not appear on the FlexPendant under the Jogging
window.

Reloading the SSYNC1 parameter
Use RobotStudio and follow these steps (see Operating manual - RobotStudio for
more information):

Action

Open the Configuration Editor and select the topic Motion.1

Select the type File.2

Click Load parameters and select mode.3

Click Open and select the file syn1_moc from the RobotWare installation.4

Restart the controller for the changes to take effect.5

Result
The mechanical unit SSYNC1 should now be available on the FlexPendant under
the Jogging window.

196 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.8.2 Reloading saved Motion parameters

4.1.8.3 Installation of several sensors

About the installation
Normally the synchronization option and the DeviceNet option are preloaded at
ABB, and do not need to be re-installed. For more information how to add options
to the system, see Operating manual - RobotStudio.
The synchronization option automatically installs one sensor into the system
parameters.

DeviceNet Dual option
When DeviceNet Dual is included, the following three sensors will be installed in
the system:

• One sensor with "Robot to press syncro type": SSYNC1
• One virtual master sensor: SSYNM1
• One virtual slave sensor: SSYNCS1

Adding sensors manually
Up to four sensors can be used with the same controller, but the parameters for
the three extra sensors must be loaded manually.
Use the following procedure to load the sensors manually.

Action

For Sensor Synchronization, connect the encoder interface unit to the CAN bus. Note
the address on the CAN bus.

1

Use RobotStudio to add new parameters.2

Click Load Parameters.3

Select: Load Parameters if no duplicates and click Open.4

Installation of a master sensor, connected to DeviceNet1 (first board).5
Load the following files one by one from the OPTION/CNV directory:

• for second sensor: syvm2_eio.cfg, syvm2_prc and syvm2_moc.cfg
• for third sensor: syvm3_eio.cfg, syvm3_prc.cfg and syvm3_moc.cfg
• for fourth sensor: syvm4_eio.cfg, syvm4_prc.cfg and syvm4_moc.cfg

Installation of a slave sensor, connected to DeviceNet2 (second board).6
Load the following files one by one from the OPTION/CNV directory:

• for second sensor: syvs2_eio.cfg, syvs2_prc.cfg and syvs2_moc.cfg
• for third sensor: syvs3_eio.cfg, syvs3_prc.cfg and syvs3_moc.cfg
• for fourth sensor: syvs4_eio.cfg, syvs4_prc.cfg and syvs4_moc.cfg

Restart the system.7

For Sensor Synchronization: If necessary, correct the address for the new encoder
interface units. Find the respective encoder interface unit in the system parameters
under the topic I/O. The default addresses in the file syvxx_eio.cfg should be replaced
by the actual address of the board.

8

Available sensors
The second and third sensor (SSYNC2, SSYNC3) should now appear in
Motion/mechanical unit and in the Jogging window on the FlexPendant.

Application manual - Controller software IRC5 197
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.8.3 Installation of several sensors

4.1.9 Programming the synchronization

4.1.9.1 General issues when programming with the synchronization option

Activate sensor
The sensor must be activated before it may be used for work object coordination,
just like any other mechanical unit. The usual ActUnit instruction is used to
activate the sensor and DeactUnit is used to deactivate the sensor.
By default, the sensor is installed inactive on start. If desired, the sensor may be
configured to always be active upon start. See Mechanical unit on page 233.

Automatic connection
Only for Sensor Synchronization:
When a sensor mechanical unit is activated, it first checks the state of the encoder
interface unit to see whether the sensor was previously connected. If the encoder
interface unit, via the I/O signal c1Connected, indicates connection, then the sensor
will automatically be connected upon activation. The purpose of this feature is to
automatically reconnect in case of a power failure with power backup on the encoder
interface unit.

Connection via WaitSensor instruction
Motions that are to be synchronized with the external device cannot be programmed
until an object has been connected to the sensor with a WaitSensor instruction.
If the object is already connected with a previous WaitSensor instruction, or if
connection was established during activation, then execution of a second
WaitSensor instruction will cause an error.
After connection to an object with a WaitSensor instruction the synchronized
motion is started using SyncToSensor\On instruction.
For details about the instructions WaitSensor and SyncToSensor\On, see
Technical reference manual - RAPID Instructions, Functions and Data types.

Programming Sensor Synchronization
In the following instructions, there are references to programming examples.

InformationAction

Create a program with the following instructions:
ActUnit SSYNC1;

1

MoveL waitp, v1000, fine, tool;

WaitSensor SSYNC1;

The instruction will return if
there is an object in the object
queue. If the is no object, the
execution will stop while wait-
ing for an object (i.e. a sync
signal).

Single-step the program past the WaitSensor instruc-
tion.

2

Continues on next page
198 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.1 General issues when programming with the synchronization option

InformationAction

The program should exit the
WaitSensor and is now
“connected” to the object.

Run the external device until a sync signal is generated
by the synchronization switch.

3

Stop the external device in the position that should
correspond to the robot target you are about to pro-
gram.

4

Start the synchronized motion with a SyncToSensor
SSYNC1\On instruction. See Programming examples
on page 200.

5

Use corner zones for the
move instructions, see
Finepoint programming on
page 204.

Program move instructions.
For every time you modify a position, run the external
device to the position that should correspond to the
robot target.

6

End the synchronized motion with a SyncToSensor
SSYNC1\Off instruction. See Programming examples
on page 200.

7

Only for Sensor Synchronization:8
Program a DropSensor SSYNC1; instruction. See
Programming examples on page 200.

Program a DeactUnit SSYNC1; instruction if this is
the end of the program, or if the sensor is no longer
needed. See Programming examples on page 200.

9

Synchronize the sensor
If it is not possible to move the external device to the desired position, modify the
position first and then edit the sensor value in the robtarget (as for any additional
axis).

Application manual - Controller software IRC5 199
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.1 General issues when programming with the synchronization option

Continued

4.1.9.2 Programming examples

Sensor Synchronization program
MoveJ p0, vmax, fine, tool1;

!Activate sensor

ActUnit SSYNC1;

!Connect to the object

WaitSensor SSYNC1;

!Start the Synchronized motion

SyncToSensor SSYNC1\On;

!Instructions with coordinated robot targets

MoveL p10, v1000, z20, tool1;

MoveL p20, v1000, z20, tool1;

MoveL p30, v1000, z20, tool1;

!Stop the synchronized motion

SyncToSensor SSYNC1\Off;

!Exit coordinated motion

MoveL p40, v1000, fine, tool1;

!Disconnect from current object

DropSensor SSYNC1;

MoveL p0, v1000, fine;

!Deactivate sensor

DeactUnit SSYNC1;

Analog Synchronization program
VAR num startdist := 600;

MoveJ p0, vmax, fine, tool1;

!Activate sensor

ActUnit SSYNC1;

WaitSensor SSYNC1 \RelDist:=startdist;

!Start the Synchronized motion

SyncToSensor SSYNC1\On;

!Instructions with coordinated robot targets

MoveL p10, v1000, z20, tool1;

MoveL p20, v1000, z20, tool1;

MoveL p30, v1000, z20, tool1;

Continues on next page
200 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.2 Programming examples

!Exit coordinated motion

MoveL p40, v1000, fine, tool1;

!Stop the synchronized motion

SyncToSensor SSYNC1\Off;

MoveL p0, v1000, fine;

!Deactivate sensor

DeactUnit SSYNC1;

Application manual - Controller software IRC5 201
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.2 Programming examples

Continued

4.1.9.3 Entering and exiting coordinated motion in corner zones

Corner zones can be used
Once a WaitSensor instruction is connected to an object it is possible to enter
and exit synchronized motion with the sensor via corner zones.

Dropping object after corner zone
If an instruction using a corner zone is used to exit coordinated motion, it cannot
be followed directly by the DropSensor instruction. This would cause the object
to be dropped before the robot has left the corner zone, when the motion still
requires the conveyor coordinated work object.
If the work object is dropped when motion still requires its position, then a stop
will occur.
To avoid this, either call a finepoint instruction or at least two corner zone
instructions before dropping the work object.

Correct example
This is an example of how to enter and exit coordinated motion via corner zones.

MoveL p10, v1000, fine, tool1;

WaitSensor SSYNC1;

MoveL p20, v500, z50, tool1;

!start synchronization after zone around p20

SyncToSensor SSYNC1\On

MoveL p30, v500, z20, tool1;

MoveL p40, v500, z20, tool1;

MoveL p50, v500, z20, tool1;

MoveL p60, v500, z50, tool1;

!Exit synchronization after zone around p60

SyncToSensor SSYNC1\Off;

MoveL p70, v500, fine, tool1;

DropSensor SSYNC1;

MoveL p10, v500, fine, tool1;

Incorrect example
This is an incorrect example of exiting coordination in corner zones. This will cause
the program to stop with an error.

MoveL p50, v500, z20, tool1;

MoveL p60, v500, z50, tool1;

!Exit coordination in zone

SyncToSensor SSYNC1\Off;

DropSensor SSYNC1;

If coordinated motion is ended in a corner zone, another move instruction must be
executed before the sensor is dropped.

202 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.3 Entering and exiting coordinated motion in corner zones

4.1.9.4 Use several sensors

Overview
When several sensors are used the program must have at least one move
instruction without any synchronization between parts of the path that are
synchronized with two different sensors.

Program example
!Connect to the object

WaitSensor SSYNC1\RelDist:=Pickdist;

!Start the Synchronized motion

SyncToSensor SSYNC1\MaxSync:=1653\On;

!Instructions with coordinated robot targets

MoveL p30, v400, z20, currtool;

!Stop the synchronized motion

SyncToSensor SSYNC1\Off;

!Instructions with coordinated robot targets

MoveL p31, v400, z20, currtool;

!Connect to the object

WaitSensor SSYNC2\RelDist:=1720;

!Instructions with coordinated robot targets

MoveL p32, v400, z50, currtool;

!Start the Synchronized motion

SyncToSensor SSYNC2\MaxSync:=2090\On;

!Instructions with coordinated robot targets

MoveL p33, v400, z20, currtool;

!Stop the synchronized motion

SyncToSensor SSYNC2\Off;

Application manual - Controller software IRC5 203
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.4 Use several sensors

4.1.9.5 Finepoint programming

Overview
Avoid the use of fine points when using synchronized motion. The robot will stop
and lose the synchronization with the sensor for 100 ms. Then the RAPID execution
will continue.
Finepoint programming can be used on the last synchronized move instruction if
the synchronization does not need to be accurate at the last target.

Program example
The following program example shows how synchronized motion may be stopped.

WaitSensor SSYNC1;

SyncToSensor SSYNC1 \On;

MoveL p1, v500, z20, tool1;

MoveL p2, v500, fine, tool1;

SyncToSensor SSYNC1 \Off;

MoveL p3, v500, z20, tool1;

MoveL p4, v500, fine, tool1;

DropSensor SSYNC1;

At p4 the robot is no longer synchronized with the external device, and there are
no restrictions for using fine points.
At p2 the synchronization will end and a fine point can be used, but the accuracy
of the synchronization will be reduced.

204 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.5 Finepoint programming

4.1.9.6 Drop sensor object

Overview
For Sensor Synchronization, a connected object may be dropped, with a
DropSensor instruction, once the synchronized motion has ended.
Example: DropSensor SSYNC1;
For Analog Synchronization, the instruction DropSensor must not be used.

Considerations
The following considerations must be considered when dropping an object:

• It is important to make sure that the robot motion is no longer using the
sensor position when the object is dropped. If robot motion still requires the
sensor position then a stop will occur when the object is dropped.

• As long as the SyncToSensor \Off instruction has not been issued, the
robot motion will be synchronized with the sensor.

• It is not necessary to be connected in order to execute a DropSensor

instruction. No error will be returned if there was no connected object.

Application manual - Controller software IRC5 205
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.6 Drop sensor object

4.1.9.7 Information on the FlexPendant

Overview
The user has access to the sensor position and speed via the FlexPendant

Jogging window
The position (in millimeters) of the sensor object is shown in the Jogging window.
This value will be negative if a Queue Tracking Distance is defined. When the
synchronization switch is triggered, the position will automatically be updated in
the Jogging window.

I/O window

Sensor Synchronization
From the I/O window the user has access to all the signals that are defined on the
encoder interface unit. From this window it is possible to view the sensor object
position (in meters) and the sensor object speed (in m/s). The speed will be 0 m/s
until the synchronization switch registers a sensor object.

Analog Synchronization
For Analog Synchronization, only the sensor position is shown in the I/O window.

206 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.7 Information on the FlexPendant

4.1.9.8 Programming considerations

Performance limits
The synchronization will be lost if joint speed limits are reached, particularly in
singularities. It is the responsibility of the programmer to ensure that the path
during synchronized movement does not exceed the speed and motion capabilities
of the robot.

Motion commands
All motion commands are allowed during synchronization.

Manual mode
The synchronization is not active in manual mode.

Speed reduction % button
The synchronization works only with 100% speed. As the robot speed is adjusted
to sensor movements the defined robot speed percentage will be overridden.

Programmed speed
The best performance of the synchronization will be obtained if the programmed
speed is near the real execution speed. The programmed speed should be chosen
as the most probable execution speed. Large changes in speed between two move
instructions should be avoided.

Finepoints
Finepoints are allowed during synchronization motion, but the robot will stop at
the fine point and the synchronization will be lost if the external device is still
moving. See Finepoint programming on page 204.

Position warnings
If robot_to_sensor position ratio is higher than 10 or lower than 0.1 a warning
will appear. The user should modify the robtarget position or the sensor value
in the robtarget according to the warning text.

Speed warnings
If programmed sensor_speed is higher than:

• (max_sync_speed*sensor_nominal_speed)/robot_tcp_speed

then a speed warning will appear and the user should modify robot speed or
sensor_nominal_speed or max_sync_speed according to the warning text.
If the programmed sensor_speed is lower than:

• (min_sync_speed*sensor_nominal_speed)/robot_tcp_speed

a similar warning will appear:
• Programmed_sensor_speed equals sensor_distance/robot_interpolation_time.

Continues on next page
Application manual - Controller software IRC5 207
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.8 Programming considerations

Change of tools
Changing the tool is not allowed during synchronization if corvec is used.

Instructions that will deactivate the synchronization
The instructions ActUnit, DeactUnit, and ClearPath will deactivate any
SyncToSensor or SupSyncSensorOn instruction. So the instructions ActUnit,
DeactUnit, and ClearPath should not be used between SyncToSensor or
SupSyncSensorOn instruction and the move instructions related to synchronized
path or supervised path.
The correct order is:

ActUnit SSYNC1;

WaitSensor SSYNC1;

SyncToSensor SSYNC1\On;

! move instructions

...

SyncToSensor SSYNC1\Off;

Other RAPID limitations
• The commands, StorePath, RestoPath do not work during synchronization.
• EoffsSet, EoffsOn, EoffsOff have an effect on the sensor taught position.
• Power fail restart is not possible with the synchronization option.

208 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.8 Programming considerations
Continued

4.1.9.9 Modes of operation

Operation in manual reduced speed mode (< 250 mm/s)
The forward and backward hard buttons can be used to step through the program.
New instructions may be added and MODPOS may be used to modify programmed
positions.
The robot will recover as normal if the three-position enabling device is released
during motion.
The robot will not perform synchronized motions to the sensor while in Manual
Reduced Speed mode.

Operation in automatic mode
Once a SyncToSensor instruction has been executed, then it is no longer possible
to step through the program with the forward and backward buttons while the
sensor is moving.

Start/Stop
The robot will stop and loose synchronization with the sensor if the STOP button
is pressed or if RAPID instruction Stop or StopMove is executed between the
SyncToSensor and DropSensor instructions.
The sensor object will not be lost but if the sensor is moving then the object will
quickly move out of the max dist. Restart synchronization from the current
instruction is not allowed if sensor is moving. The program must be restarted from
MAIN. If a restart is forced the robot will stop with max_dist error where the sensor
has stopped.

Emergency Stop/Restart
When the emergency stop is pressed the robot will stop immediately. If the program
was stopped after a SyncToSensor then the sensor object will not be lost but if
the sensor is moving then the object will quickly move out of the max distance.
Restart synchronization from the current instruction is not possible and the program
must be restarted from MAIN. If a restart is forced after the question “Do you want
to regain“, the robot will move unsynchronized to the sensor at programmed speed.

Operation under manual full speed mode (100%)
Operation in manual full speed mode is similar to operation in automatic mode.
The program may be run by pressing and holding the start button, but once a
SyncToSensor instruction has been executed then it is no longer possible to step
through the program with the forward or backward buttons while the sensor is
moving.

Hold to run button
Pressing and releasing the hold to run button will make the robot stop and restart.
The synchronization is lost at robot stop. At restart the robot will try to regain
synchronization at max_adjustment_speed.

Continues on next page
Application manual - Controller software IRC5 209
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.9 Modes of operation

Stop/Restart
When the stop button is pressed, or emergency stop is pressed, the robot will stop
immediately. If the program was stopped after a SyncToSensor then the
synchronized object will not be lost but if the sensor is moving then the object will
quickly move out of the max distance. Restart from the current instruction is not
possible and the program must be restarted from MAIN.

210 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.9.9 Modes of operation
Continued

4.1.10 Robot to robot synchronization

4.1.10.1 Introduction

Overview
It is possible to synchronize two robot systems in a synchronization application.
This is done with a master and a slave robot setup.

Requirements
For cable connection and setup, see Applicationmanual - DeviceNet Master/Slave.

Application manual - Controller software IRC5 211
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.1 Introduction

4.1.10.2 The concept of robot to robot synchronization

Description
The basic idea of robot to robot synchronization is that two robot should use a
common virtual sensor. The master robot controls the virtual motion of this sensor.
The slave robot uses the sensor’s virtual position and speed to adjust its speed.
The synchronization is achieved by defining positions where the two robots should
be at the same time, and assigning a sensor value for each of these points.

Illustration

0 200 400 800600 1000

A

B

C

1

4

3

2

1

2

3

4

1 2 3 4

xx0400001145

212 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.2 The concept of robot to robot synchronization

4.1.10.3 Master robot configuration parameters

Overview
Use the following parameters to set up the master robot.
Use RobotStudio to change the parameters.

Topic: Motion

ValueSINGLE_TYPE/Parameter

SSYNC2Name

SS_LINmechanics

SSYNC2process_name

PSSYNCuse_path

Topic: Process

ValueSENSOR_SYSTEM/Parameter

SSYNC1Name

CANsensor_type

CAN1use_sensor

1000adjustment_speed

600min_dist

20000max_dist

10correction_vector_ramp_length

Topic: I/O

EIO_UNIT

ValueEIO_UNIT/Parameter

MASTER1Name

DN_SLAVEUnitType

DeviceNet1Bus

1DN_Address

EIO_SIGNAL

ValueEIO_SIGNAL/Parameter

ao1PositionName

AOSignalType

MASTER1Unit

0-15UnitMap

10.0MaxLog

1MaxPhys

1MaxPhysLimit

Continues on next page
Application manual - Controller software IRC5 213
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.3 Master robot configuration parameters

ValueEIO_SIGNAL/Parameter

32767MaxBitVal

-10.0MinLog

-1MinPhys

-1MinPhysLimit

-32767MinBitVal

ValueEIO_SIGNAL/Parameters

ao1SpeedName

AOSignalType

MASTER1Unit

16-31UnitMap

10.0MaxLog

1MaxPhys

1MaxPhysLimit

32767MaxBitVal

-10.0MinLog

-1MinPhys

-1MinPhysLimit

-32767MinBitVal

ValueEIO_SIGNAL/Parameters

ao1PredTimeName

AOSignalType

MASTER1Unit

32-47UnitMap

10.0MaxLog

1MaxPhys

1MaxPhysLimit

32767MaxBitVal

-10.0MinLog

-1MinPhys

-1MinPhysLimit

-32767MinBitVal

ValueEIO_SIGNAL/Parameters

do1DreadyName

DOSignalType

MASTER1Unit

48UnitMap

Continues on next page
214 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.3 Master robot configuration parameters
Continued

ValueEIO_SIGNAL/Parameters

do1Sync2Name

DOSignalType

MASTER1Unit

50UnitMap

Application manual - Controller software IRC5 215
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.3 Master robot configuration parameters

Continued

4.1.10.4 Slave robot configuration parameters

Overview
For default configuration, see System parameters on page 231.
Use RobotStudio to change the parameters and to set up the slave robot.

Description
To make the slave robot stop and restart synchronized with the master robot:

• Set the parameter value min_sync_speed to 0.0
The slave robot will also stop if a fine point is defined in the master robot path.

Topic: Process

SENSOR_SYSTEM

ValueSENSOR_SYSTEM/Parameter

SSYNCS1Name

CANsensor_type

CAN1use_sensor

1000adjustment_speed

600min_dist

20000max_dist

10correction_vector_ramp_length

1000nominal_speed

CAN_INTERFACE

ValueCAN_INTERFACE/Parameters

CAN1Name

34Signal delay

c1ConnectedConnected signal

c1PositionPosition signal

c1SpeedVelocity signal

c1NullSpeedNull speed signal

Data ready signal

c1WaitWObjWaitwobj signal

c1DropWobjDropwobj signal

c1DTimestampData Time stamp

c1RemAllPObjRemAllPObj signal

NOVirtual sensor

0,33Sensor Speed filter

Continues on next page
216 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.4 Slave robot configuration parameters

Topic: I/O

EIO_UNIT

ValueEIO_UNIT/Parameters

SLAVE1Name

DN_SLAVEUnitType

DeviceNet2Bus

1DN_Address

EIO_SIGNAL

ValueEIO_SIGNAL/Parameters

ai1PositionName

AISignalType

SLAVE1Unit

0-15UnitMap

10.0MaxLog

1MaxPhys

1MaxPhysLimit

32767MaxBitVal

-10.0MinLog

-1MinPhys

-1MinPhysLimit

-32767MinBitVal

ValueEIO_SIGNAL/Parameters

ai1SpeedName

AISignalType

SLAVE1Unit

16-31UnitMap

10.0MaxLog

1MaxPhys

1MaxPhysLimit

32767MaxBitVal

-10.0MinLog

-1MinPhys

-1MinPhysLimit

-32767MinBitVal

ValueEIO_SIGNAL/Parameters

ai1PredTimeName

AISignalType

Continues on next page
Application manual - Controller software IRC5 217
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.4 Slave robot configuration parameters

Continued

ValueEIO_SIGNAL/Parameters

SLAVE1Unit

32-47UnitMap

10.0MaxLog

1MaxPhys

1MaxPhysLimit

32767MaxBitVal

-10.0MinLog

-1MinPhys

-1MinPhysLimit

-32767MinBitVal

ValueEIO_SIGNAL/Parameters

di1DreadyName

DISignalType

SLAVE1Unit

48UnitMap

ValueEIO_SIGNAL/Parameters

di1Sync2Name

DISignalType

SLAVE1Unit

50UnitMap

218 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.4 Slave robot configuration parameters
Continued

4.1.10.5 Programming example for master robot

Overview
The following program is an example of how to program a master robot.

Master robot programming
syncstart:=20;

Syncpos1:=300;

Syncpos2:=600;

Syncpos3:=900;

Syncpos4:=1200;

!Synchronized motion between master and slave

robpos1.extax.eax_e:=syncpos1;

robpos2.extax.eax_e:=syncpos2;

robpos3.extax.eax_e:=syncpos3;

robpos4.extax.eax_e:=syncpos4;

robpos5.extax.eax_e:=syncstart;

!Init of external axis

pOutsideNext.extax.eax_e:=syncstart;

!Activate sensor

ActUnit SSYNC1;

!Instruction with coordinated robot targets

MoveJ pOutsideNext, v1000, fine, tool1;

!Init of external axis

robposstart.extax.eax_e:=syncstart;

!Set digital output

SetDO Dosync 1,0

!Instructions with coordinated robot targets

MoveJ robposstart, v2000, z50, tool1;

!Set digital output

PulseDO\PLength:= 0.1, doSync1;

!Instructions with coordinated robot targets

MoveJ robpos1, v2000, z10, tool1;

MoveJ robpos2, v2000, z10, tool1;

MoveJ robpos3, v2000, z10, tool1;

MoveJ robpos4, v2000, z10, tool1;

MoveJ robpos5, v2000, z10, tool1;

Continues on next page
Application manual - Controller software IRC5 219
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.5 Programming example for master robot

Considerations
The following is to be considered

• The values of extax.eax_e should increase for every robtarget during
synchronization. The first move instruction of the master robot, after the
synchronization, should also have a higher extax.eax_e value than the
previous instruction. Otherwise the value of extax.eax_e may decrease,
and the synchronization end, before the slave robot has reached its target.

• The movement back to syncstart (move instruction to robpos5 in the
example) may be slower than the ordered speed (v2000). If this robot
movement is short and the value of extax.eax_e is large, the maximum
speed will be limited by the virtual sensor speed.

• Do not use WaitSensor or DropSensor.
• Verify that the virtual sensor max speed (speed_out) is less than 1m/s.

220 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.5 Programming example for master robot
Continued

4.1.10.6 Programming example for slave robot

Overview
The following program is an example of how to program a slave robot.

Slave robot programming
syncstart:=20;

Syncpos1:=300;

Syncpos2:=600;

Syncpos3:=900;

!Synchronized motion between master and slave

robpos1.extax.eax_e:=syncpos1;

robpos2.extax.eax_e:=syncpos2;

robpos3.extax.eax_e:=syncpos3;

!Instructions with coordinated robot targets

MoveJ posstart, v500, z50, tool1;

!Wait for digital input

WaitDI diSync1; 1;

!Connect to the object

WaitSensor SSYNC1;\RelDist:=100;

!Start the Synchronized motion

SyncToSensor SSYNC1\On;

!Instructions with coordinated robot targets

MoveJ robpos1, v2000, z10, tool1;

MoveJ robpos2, v2000, z10, tool1;

MoveJ robpos3, v2000, z10, tool1;

!Stop the synchronized motion

SyncToSensor SSYNC1\Off;

Considerations
The following is to be considered:

• Do not use DropSensor.
• Do not use any corvecs.

Application manual - Controller software IRC5 221
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.10.6 Programming example for slave robot

4.1.11 Synchronize with hydraulic press using recorded profile

4.1.11.1 Introduction

Overview
This section describes how to use a recorded machine profile to improve the
accuracy of robot’s synchronization with a hydraulic press. This profile is used for
modeling of press path. Not using a recorded profile will require a bigger distance
between robot and press model when teaching the path.

Principles of hydraulic press synchronization
1 Record the movement of the hydraulic press.
2 Activate the record to be used in the next cycle.
3 Activate the sensor synchronization with the RAPID instruction

SyncToSensor.

222 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.11.1 Introduction

4.1.11.2 Configuration of system parameters

Introduction
This section describes how to configure the parameters to get the best result when
using recorded sensor profiles with a hydraulic press. Start the tuning with the
general settings. If the system is not using a DSQC377A encoder, see Settings for
analog input with no DSQC377A encoder on page 223 If the sensor is using group
input, see Settings for sensor using Group input on page 224. Descriptions of the
system parameters are found in System parameters on page 231.

General settings
This parameter belong to the configuration type Fieldbus Command in the topic
I/O.

ValueParameter

10-15 Hz, Change this value to get good accuracy during start
and stop.

Parameter Value for the in-
stance where Type of
Fieldbus Command is
IIRFFP.

This parameter belong to the configuration type Path Sensor Synchronization in
the topic Motion.

ValueParameter

ROBOT_TO_HPRESSynchronization Type

The parameters belong to the configuration type Sensor systems in the topic
Process.

ValueParameter

Type the name of the I/O signalSensor start signal

Type the name of the I/O signalStop press signal

Type the name of the I/O signalSync Alarm signal

Settings for analog input with no DSQC377A encoder
The parameters belong to the configuration type Can Interface in the topic Process.

ValueParameter

YesVirtual sensor

Type the name of the analog input.Position signal

Note

All other signals except Position signal should be empty (i.e. "").

Tip

WaitSensor and DropSensor are not needed in the RAPID program.

Continues on next page
Application manual - Controller software IRC5 223
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.11.2 Configuration of system parameters

Settings for sensor using Group input
The parameters belong to the configuration type Sensor systems in the topic
Process.

ValueParameter

Define the number of input data per meter, the default value is
set to 10000.

Pos Group IO scale

The parameters belong to the configuration type Can Interface in the topic Process.

ValueParameter

YesVirtual sensor

Type the name of the used group input.Position signal

Note

All other signals except Position signal should be empty (i.e. "")

Tip

WaitSensor and DropSensor are not needed in the RAPID program.

224 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.11.2 Configuration of system parameters
Continued

4.1.11.3 Program example

Overview
This section describes the programming cycles that are typical for programming
a hydraulic press.

Program example

First press cycle
A pulse on sensor_start_signal will start storing position in a record array.
During this cycle the robot is not synchronized with press.

ActUnit SSYNC1;

WaitSensor SSYNC1;

! Set up a recording for 2 seconds

PrxStartRecord SSYNC1, 2, PRX_HPRESS_PROF;

! Process waiting for sensor_start_signal

! then waiting for press movement and record it during 2 sec.

Second press cycle
A pulse on sensor_start_signal is needed to synchronize readings of record and
actual positions for each cycle.
During press opening the robot moves synchronized with press.

PrxActivAndStoreRecord SSYNC1, 0, "profile.log";

WaitSensor Ssync1;

MoveL p10, v1000, z10, tool, \WObj:=wobj0;

SyncToSensor Ssync1\On;

MoveL p20, v1000, z20, tool, \WObj:=wobj0;

MoveL p30, v1000, z20, tool, \WObj:=wobj0;

SyncToSensor Ssync1\Off;

Third press cycle
No special instruction is needed, but a pulse on sensor_start_signal is needed to
synchronize readings of record and actual positions for each cycle. A new record
can also be started.
During press opening the robot moves synchronized with press.

WaitSensor Ssync1;

MoveL p10, v1000, z10, tool, \WObj:=wobj0;

SyncToSensor Ssync1\On;

MoveL p20, v1000, z20, tool, \WObj:=wobj0;

MoveL p30, v1000, z20, tool, \WObj:=wobj0;

SyncToSensor Ssync1\Off;

Application manual - Controller software IRC5 225
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.11.3 Program example

4.1.12 Synchronize with molding machine using recorded profile

4.1.12.1 Introduction

Overview
This section describes how to use a recorded machine profile to improve the
accuracy of a robot’s synchronization with a molding machine. This profile is used
for modeling of mold path. Not using a recorded profile will require a bigger distance
between robot and machine model when teaching the path.

Principles of mold synchronization
1 Record the movement of the Molding machine.
2 Activate the record to be used in the next cycle.
3 Activate the sensor synchronization with the RAPID instruction

SynctoSensor.

Tip

When the molding machine is closing, supervision can be used instead of
synchronization. For more information, see Supervision on page 230.

226 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.12.1 Introduction

4.1.12.2 Configuration of system parameters

Introduction
This section describes how to configure the parameters to get the best result when
using recorded sensor profiles with a molding machine. Start the tuning with the
general settings. If the system is not using a DSQC377A encoder, see Settings for
analog input with no DSQC377A encoder on page 227 If the sensor is using group
input, see Settings for sensor using Group input on page 228. Descriptions of the
system parameters are found in System parameters on page 231.

General settings
This parameter belong to the configuration type Fieldbus Command in the topic
I/O.

ValueParameter

10-15 Hz, Change this value to get good accuracy during start
and stop.

Parameter Value for the in-
stance where Type of
Fieldbus Command is
IIRFFP.

This parameter belong to the configuration type Path Sensor Synchronization in
the topic Motion.

ValueParameter

SYNC_TO_IMMSynchronization Type

The parameters belong to the configuration type Sensor systems in the topic
Process.

ValueParameter

Type the name of the I/O signalSensor start signal

Type the name of the I/O signalStop press signal

Type the name of the I/O signalSync Alarm signal

Settings for analog input with no DSQC377A encoder
The parameters belong to the configuration type Can Interface in the topic Process.

ValueParameter

YesVirtual sensor

Type the name of the analog input.Position signal

Note

All other signals except Position signal should be empty (i.e. "").

Tip

WaitSensor and DropSensor are not needed in the RAPID program.

Continues on next page
Application manual - Controller software IRC5 227
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.12.2 Configuration of system parameters

Settings for sensor using Group input
The parameters belong to the configuration type Sensor systems in the topic
Process.

ValueParameter

Define the number of increments per meter for the group input.
The default value is set to 10000.

Pos Group IO scale

The parameters belong to the configuration type Can Interface in the topic Process.

ValueParameter

YesVirtual sensor

Type the name of the used group input.Position signal

Note

All other signals except Position signal should be empty (i.e. "")

Tip

WaitSensor and DropSensor are not needed in the RAPID program.

228 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.12.2 Configuration of system parameters
Continued

4.1.12.3 Program example

Overview
This section describes the programming cycles that are typical for programming
a molding machine.

Program example

First press cycle
A pulse on sensor_start_signal will start storing position in a record array.
During this cycle the robot is not synchronized with press.

ActUnit SSYNC1;

WaitSensor SSYNC1;

! Set up a recording for 2 seconds

PrxStartRecord SSYNC1, 2, PRX_PROFILE_T1;

! Process waiting for sensor_start_signal

! then waiting for press movement and record it during 2 sec.

Second press cycle
A pulse on sensor_start_signal is needed to synchronize readings of record and
actual positions for each cycle.
During press opening the robot moves synchronized with press.

PrxActivAndStoreRecord SSYNC1, 0, "profile.log";

WaitSensor Ssync1;

MoveL p10, v1000, z10, tool, \WObj:=wobj0;

SyncToSensor Ssync1\On;

MoveL p20, v1000, z20, tool, \WObj:=wobj0;

MoveL p30, v1000, z20, tool, \WObj:=wobj0;

SyncToSensor Ssync1\Off;

Third press cycle
No special instruction is needed, but a pulse on sensor_start_signal is needed to
synchronize readings of record and actual positions for each cycle. A new record
can also be started.
During press opening the robot moves synchronized with press.

WaitSensor Ssync1;

MoveL p10, v1000, z10, tool, \WObj:=wobj0;

SyncToSensor Ssync1\On;

MoveL p20, v1000, z20, tool, \WObj:=wobj0;

MoveL p30, v1000, z20, tool, \WObj:=wobj0;

SyncToSensor Ssync1\Off;

Application manual - Controller software IRC5 229
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.12.3 Program example

4.1.13 Supervision

Introduction
The supervision can be used to save cycle time when robot moves outside the
mold or press. Instead of waiting to be outside the machine to enable close mold
the robot enable close mold when it starts to move outside the mold after picking
the part.
The supervision can stop the mold if it comes too near the robot by setting the
output signal defined by the system parameter Sync Alarm signal.
SupSyncSensorOn is used to supervise the movement of the robot with the mold
or press. Usually supervision is used until the robot is moved outside the mold or
press. With supervision it is possible to turn off the synchronization and turn on
supervision when a workpiece is dropped or collected in the molding machine.
SupSyncSensorOn protects the robot and machine from damaging.
Supervision does not deactivate the synchronization.

Example
For the case you cannot move the sensor to defined position you have to set the
external axis value in your rapid program

p10.extax.eax_f:=sens10;

p20.extax.eax_f:=sens20;

p30.extax.eax_f:=sens30;

WaitSensor Ssync1;

MoveL p10, v1000, fine, tool, \WObj:=wobj0;

SupSyncSensorOn Ssync1, 150, -100, 650\SafetyDelay:=0;;

MoveL p20, v1000, z20, tool, \WObj:=wobj0;

MoveL p30, v1000, fine, tool, \WObj:=wobj0;

SupSyncSensorOff Ssync1;

Sens10 is the expected position of the machine (model of the machine movement
related to robot movement) when robot will be at p10 and sens20 is the expected
position of the machine when robot will be at p20.
The supervision will be done between the sensor position 650 and 150 mm and
triggers the output if the distance between the robot and the mould is smaller than
100 mm.
Safetydist (in this case -100) is the limit of the difference between expected
machine position and the real machine position. It must be negative, i.e. the model
should always be moving in advance of the real machine. In the case of decreasing
machine positions the limit must be negative corresponding to maximum negative
position difference (and minimum advance distance). In the case of increasing
machine positions the limit must be positive corresponding to minimum positive
position difference (and minimum advance distance).

230 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.13 Supervision

4.1.14 System parameters

About system parameters
This section describes the system parameters in a general way. For more
information about the parameters, see Technical reference manual - System
parameters.

Fieldbus Command
Only for Sensor Synchronization.
These are different instances of the type Fieldbus Command in the topic I/O.

DescriptionType of Fieldbus
Command

The number of counts per meter of the external device motion.Counts Per Meter

Defines the minimum distance that the external device must move
after a sync signal before a new sync signal is accepted as a valid
object.

Sync Separation

For Sensor Synchronization, there is no need to change the default
value.

Defines the placement of the synchronization switch relative to the
0.0 meter point on the sensor.

Queue Tracking Dis-
tance

For Sensor Synchronization, there is no need to change the default
value.

Defines the size of the start window. It is possible to connect to ob-
jects within this window with the instruction WaitSensor.

Start Window Width

For Sensor Synchronization, there is no need to change the default
value.

Specifies the location of the real part of the poles in the left-half plane
(in Hz).

IIRFFP

Sensor systems
These parameters belong to the topic Process and the type Sensor System.

DescriptionParameter

When entering sensor synchronization, the robot speed must be adjus-
ted to the speed of the external device. The speed (in mm/s) at which
the robot catches up to this speed for the first motion is defined by Ad-
justment Speed.

Adjustment speed

The minimum distance (in millimeters) that a connected object may
have before being automatically dropped.

Min dist

For Sensor Synchronization, there is no need to change the default
value.
Not used for Analog Synchronization.

The maximum distance (in millimeters) that a connected object may
have before being automatically dropped.

Max dist

For Sensor Synchronization, there is no need to change the default
value.
Not used for Analog Synchronization.

The nominal work speed of the external device. If the speed of the
device exceeds 200 mm/s this parameter must be increased.

Sensor nominal
speed

Continues on next page
Application manual - Controller software IRC5 231
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.14 System parameters

DescriptionParameter

Name of the digital input signal telling that press is stopping. This signal
is needed for safe stop of robot.

Stop press signal

Name of the digital input signal to synchronize recorded profile and
new machine movement. The signal must be set before start of machine
movement. The signal must be triggered 100 ms before the press moves.

Sensor start sig-
nal

Defines for how many calculation steps the position error may exceed
Max Advance Distance. During this ramping period, the position error
may be 5 times Max Advance Distance.

Start ramp

Name of the digital output signal to stop the synchronized machine.This
signal may be set during supervision of sync sensor.

Sync Alarm signal

CAN Interface
These parameters belong to the topic Process and the type CAN Interface.

DescriptionParameter

Name of the digital input signal for connection.Connected signal
Not used for Analog Synchronization.

Name of the analog input signal for sensor position.Position signal

Name of the analog input signal for sensor speed.Velocity signal

Name of the digital input signal indicating zero speed on the sensor.Null speed signal
Not used for Analog Synchronization.

Name of the digital input signal indicating a poll of the encoder unit.Data ready signal
Not used for Analog Synchronization.

Name of the digital output signal to indicate that a connection is desired
to an object in the queue.

Waitwobj signal

Not used for Analog Synchronization.

Name of the digital output signal to drop a connected object on the
encoder unit

Dropwobj signal

Not used for Analog Synchronization.

Name of the digital output signal to indicate that an object has gone
past the start window without being connected.

PassStartW signal

Not used for Analog Synchronization.

Time (in ms) at which the synchronization process read the sensor
position.

Pos Update time

Motion Planner
These parameters belong to the topic Motion and the type Motion planner.

DescriptionParameter

The period at which steps along the path are calculated.Path resolution

The time (in seconds) at which the sensor process updates the
robot kinematics on the sensor position.

Process update time

CPU load equalization needs to be lowered for the synchronization
option. The default value is 2 but for the synchronization option
it should be set equal to 1 to have a stable synchronization speed.

CPU load equalization

Continues on next page
232 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.14 System parameters
Continued

Mechanical unit
These parameters belong to the topic Motion and the type Mechanical unit.

DescriptionParameter

The name of the unit (max. 7 characters).Name

The sensor is to be activated automatically at start up.Activate at start up

The sensor cannot be deactivated.Deactivate Forbidden

Single type
This parameter belongs to the topic Motion and the type Single type.

DescriptionParameter

Specifies the mechanical structure of the sensor.Mechanics

Transmission
This parameter belong to the topic Motion and the type Transmission.

DescriptionParameter

Specifies if the sensor is rotating (Yes) or linear (No).Rotating move

Path Sensor Synchronization
These parameters belong to the topic Motion and the type Path Sensor
Synchronization. They are used to set allowed deviation between calculated and
actual position of the external device, and minimum/maximum TCP speed for the
robot.

DescriptionParameter

The max advance distance allowed from calculated position to ac-
tual position of the external device.

Max Advance Distance

The max delay distance allowed from calculated position to actual
position of the external device.

Max Delay Distance

The max robot TCP speed allowed in m/s.Max Synchronization
Speed

The min robot TCP speed allowed in m/s.Min Synchronization
Speed

Application manual - Controller software IRC5 233
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.14 System parameters

Continued

4.1.15 I/O signals

Overview
Sensor Synchronization provides several I/O signals which allow a user or RAPID
program to monitor and control the object queue on the encoder interface unit.
The object queue is designed for the option Conveyor Tracking and has more
functionality than required by Sensor Synchronization. Since each closing of a
press is considered an object in the object queue, signals for the object queue
may occasionally be useful.

Object queue signals
The following table shows the I/O signals in the encoder unit DSQC 354 which
impact the object queue.

DescriptionInstruction

Group input showing the number of objects in the object queue. These
objects are registered by the synchronization switch and have not been
dropped.

c1ObjectsInQ

Digital output that removes the first pending object from the object queue.
Pending objects are objects that are in the queue but are not connected
to a work object.

c1Rem1PObj

Digital output that removes all pending objects. If an object is connected,
then it is not removed.

c1RemAllPObj

Digital output that will cause the encoder interface unit to drop the tracked
object and disconnect it. The object is removed from the queue.

c1DropWObj

Do not use c1DropWObj in RAPID code. Use the DropWobj instruction
instead.

234 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.15 I/O signals

4.1.16 RAPID components

About the RAPID components
This is an overview of all instructions, functions, and data types in Machine
Synchronization.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types.

Instructions

DescriptionInstructions

Drop object on sensorDropSensor

Activate and store the recorded profile dataPrxActivAndStoreRecord

Activate the recorded profile dataPrxActivRecord

Store and debug the recorded profile dataPrxDbgStoreRecord

Deactivate a recordPrxDeactRecord

Reset the zero position of the sensorPrxResetPos

Reset and deactivate all recordsPrxResetRecords

Set a reference position for the sensorPrxSetPosOffset

Set the sample time for recording a profilePrxSetRecordSampleTime

Set sync alarm behaviorPrxSetSyncalarm

Record a new profilePrxStartRecord

Stop recording a profilePrxStopRecord

Store the recorded profile dataPrxStoreRecord

Use the recorded profile dataPrxUseFileRecord

Stop synchronized sensor supervisionSupSyncSensorOff

Start synchronized sensor supervisionSupSyncSensorOn

Sync to sensorSyncToSensor

Wait for connection on sensorWaitSensor

Functions

DescriptionFunctions

Get the maximum sensor positionPrxGetMaxRecordpos

Data types
Machine Synchronization includes no data types.

Application manual - Controller software IRC5 235
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

4 Motion coordination
4.1.16 RAPID components

This page is intentionally left blank

5 Motion Events
5.1 World Zones [608-1]

5.1.1 Overview of World Zones

Purpose
The purpose of World Zones is to stop the robot or set an output signal if the robot
is inside a special user-defined zone. Here are some examples of applications:

• When two robots share a part of their respective work areas. The possibility
of the two robots colliding can be safely eliminated by World Zones
supervision.

• When a permanent obstacle or some temporary external equipment is located
inside the robot’s work area. A forbidden zone can be created to prevent the
robot from colliding with this equipment.

• Indication that the robot is at a position where it is permissible to start program
execution from a Programmable Logic Controller (PLC).

A world zone is supervised during robot movements both during program execution
and jogging. If the robot’s TCP reaches the world zone or if the axes reaches the
world zone in joints, the movement is stopped or a digital output signal is set.

WARNING

For safety reasons, this software shall not be used for protection of personnel.
Use hardware protection equipment for that.

What is included
The RobotWare option World Zones gives you access to:

• instructions used to define volumes of various shapes
• instructions used to define joint zones in coordinates for axes
• instructions used to define and enable world zones

Basic approach
This is the general approach for setting up World Zones. For a more detailed
example of how this is done, see Code examples on page 241.

1 Declare the world zone as stationary or temporary.
2 Declare the shape variable.
3 Define the shape that the world zone shall have.
4 Define the world zone (that the robot shall stop or that an output signal shall

be set when reaching the volume).

Continues on next page
Application manual - Controller software IRC5 237
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

5 Motion Events
5.1.1 Overview of World Zones

Limitations
Supervision of a volume only works for the TCP. Any other part of the robot may
pass through the volume undetected. To be certain to prevent this, you can
supervise a joint world zone (defined byWZLimJointDef or WZHomeJointDef).
A variable of type wzstationary or wztemporary can not be redefined. They
can only be defined once (with WZLimSup or WZDOSet).
World Zones supervision is not accessible when lead-through is active.

238 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

5 Motion Events
5.1.1 Overview of World Zones
Continued

5.1.2 RAPID components

Data types
This is a brief description of each data type in World Zones. For more information,
see respective data type in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionData type

wztemporary is used to identify a temporary world zone and can be
used anywhere in the RAPID program.

wztemporary

Temporary world zones can be disabled, enabled again, or erased
via RAPID instructions. Temporary world zones are automatically
erased when a new program is loaded or when program execution
start from the beginning in the MAIN routine.

wzstationary is used to identify a stationary world zone and can
only be used in an event routine connected to the event POWER ON.
For information on defining event routines, see Operating manu-
al - IRC5 with FlexPendant.

wzstationary

A stationary world zone is always active and is reactivated by a restart
(switch power off then on, or change system parameters). It is not
possible to disable, enable or erase a stationary world zone via
RAPID instructions.
Stationary world zones shall be used if security is involved.

shapedata is used to describe the geometry of a world zone.shapedata
World zones can be defined in 4 different geometrical shapes:

• a straight box, with all sides parallel to the world coordinate
system

• a cylinder, parallel to the z axis of the world coordinate system
• a sphere
• a joint angle area for the robot axes and/or external axes

Instructions
This is a brief description of each instruction in World Zones. For more information,
see respective instruction in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionInstruction

WZBoxDef is used to define a volume that has the shape of a straight
box with all its sides parallel to the axes of the world coordinate sys-
tem. The definition is stored in a variable of type shapedata.

WZBoxDef

The volume can also be defined as the inverse of the box (all volume
outside the box).

WZCylDef is used to define a volume that has the shape of a cylinder
with the cylinder axis parallel to the z-axis of the world coordinate
system. The definition is stored in a variable of type shapedata.

WZCylDef

The volume can also be defined as the inverse of the cylinder (all
volume outside the cylinder).

WZSphDef is used to define a volume that has the shape of a sphere.
The definition is stored in a variable of type shapedata.

WZSphDef

The volume can also be defined as the inverse of the sphere (all
volume outside the sphere).

Continues on next page
Application manual - Controller software IRC5 239
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

5 Motion Events
5.1.2 RAPID components

DescriptionInstruction

WZLimJointDef is used to define joint coordinate for axes, to be
used for limitation of the working area. Coordinate limits can be set
for both the robot axes and external axes.

WZLimJointDef

For each axis WZLimJointDef defines an upper and lower limit. For
rotational axes the limits are given in degrees and for linear axes the
limits are given in mm.
The definition is stored in a variable of type shapedata.

WZHomeJointDef is used to define joint coordinates for axes, to be
used to identify a position in the joint space. Coordinate limits can be
set for both the robot axes and external axes.

WZHomeJointDef

For each axis WZHomeJointDef defines a joint coordinate for the
middle of the zone and the zones delta deviation from the middle. For
rotational axes the coordinates are given in degrees and for linear
axes the coordinates are given in mm.
The definition is stored in a variable of type shapedata.

WZLimSup is used to define, and enable, stopping the robot with an
error message when the TCP reaches the world zone. This supervision
is active both during program execution and when jogging.

WZLimSup

When calling WZLimSup you specify whether it is a stationary world
zone, stored in a wzstationary variable, or a temporary world zone,
stored in a wztemporary variable.

WZDOSet is used to define, and enable, setting a digital output signal
when the TCP reaches the world zone.

WZDOSet

When callingWZDOSet you specify whether it is a stationary world
zone, stored in a wzstationary variable, or a temporary world zone,
stored in a wztemporary variable.

WZDisable is used to disable the supervision of a temporary world
zone.

WZDisable

WZEnable is used to re-enable the supervision of a temporary world
zone.

WZEnable

A world zone is automatically enabled on creation. Enabling is only
necessary after it has been disabled with WZDisable.

WZFree is used to disable and erase a temporary world zone.WZFree

Functions
World Zones does not include any RAPID functions.

240 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

5 Motion Events
5.1.2 RAPID components
Continued

5.1.3 Code examples

Create protected box
To prevent the robot TCP from moving into stationary equipment, set up a stationary
world zone around the equipment.
The routine my_power_on should then be connected to the event POWER ON.
For information on how to do this, read about defining event routines in Operating
manual - IRC5 with FlexPendant.

xx0300000178

VAR wzstationary obstacle;

PROC my_power_on()

VAR shapedata volume;

CONST pos p1 := [200, 100, 100];

CONST pos p2 := [600, 400, 400];

!Define a box between the corners p1 and p2

WZBoxDef \Inside, volume, p1, p2;

!Define and enable supervision of the box

WZLimSup \Stat, obstacle, volume;

ENDPROC

Signal when robot is in position
When two robots share a work area it is important to know when a robot is out of
the way, letting the other robot move freely.
This example defines a home position where the robot is in a safe position and
sets an output signal when the robot is in its home position. The robot is standing
on a travel track, handled as external axis 1. No other external axes are active.

Continues on next page
Application manual - Controller software IRC5 241
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

5 Motion Events
5.1.3 Code examples

The shadowed area in the illustration shows the world zone.

xx0300000206

VAR wztemporary home;

PROC zone_output()

VAR shapedata joint_space;

!Define the home position

CONST jointtarget home_pos := [[0, -20, 0, 0, 0, 0], [0, 9E9,
9E9, 9E9, 9E9, 9E9]];

!Define accepted deviation from the home position

CONST jointtarget delta_pos := [[2, 2, 2, 2, 2, 2], [10, 9E9,
9E9, 9E9, 9E9, 9E9]];

!Define the shape of the world zone

WZHomeJointDef \Inside, joint_space, home_pos, delta_pos;

!Define the world zone, setting the

!signal do_home to 1 when in zone

WZDOSet \Temp, home \Inside, joint_space, do_home, 1;

ENDPROC

242 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

5 Motion Events
5.1.3 Code examples
Continued

6 Motion functions
6.1 Independent Axis [610-1]

6.1.1 Overview

Purpose
The purpose of Independent Axis is to move an axis independently of other axes
in the robot system. Some examples of applications are:

• Move an external axis holding an object (for example rotating an object while
the robot is spray painting it).

• Save cycle time by performing a robot task at the same time as an external
axis performs another.

• Continuously rotate robot axis 6 (for polishing or similar tasks).
• Reset the measurement system after an axis has rotated multiple revolutions

in the same direction. Saves cycle time compared to physically winding back.
An axis can move independently if it is set to independent mode. An axis can be
changed to independent mode and later back to normal mode again.

What is included
The RobotWare option Independent Axis gives you access to:

• instructions used to set independent mode and specify the movement for an
axis

• an instruction for changing back to normal mode and/or reset the
measurement system

• functions used to verify the status of an independent axis
• system parameters for configuration.

Basic approach
This is the general approach for moving an axis independently. For detailed
examples of how this is done, see Code examples on page 247.

1 Call an independent move instruction to set the axis to independent mode
and move it.

2 Let the robot execute another instruction at the same time as the independent
axis moves.

3 When both robot and independent axis has stopped, reset the independent
axis to normal mode.

Reset axis
Even without being in independent mode, an axis might rotate only in one direction
and eventually loose precision. The measurement system can then be reset with
the instruction IndReset.
The recommendation is to reset the measurement system for an axis before its
motor has rotated 10000 revolutions in the same direction.

Continues on next page
Application manual - Controller software IRC5 243
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.1.1 Overview

Limitations
A mechanical unit may not be deactivated when one of its axes is in independent
mode.
Axes in independent mode cannot be jogged.
The only robot axis that can be used as an independent axis is axis number 6. On
IRB 1600, 2600 and 4600 models (except ID version), the instruction IndReset

can also be used for axis 4.
Internal and customer cabling and equipment may limit the ability to use
independent axis functionality on axis 4 and 6.
The option is not possible to use in combination with:

• SafeMove I

• Track Motion (IRBT)
• Positioners (IRBP) on Interchange axes
• Tool change

I Independent Axis can in some cases be combined with SafeMove2 if the additional axis does not
move the robot, and the additional axis is not monitored by SafeMove. Contact your local ABB
sales office team for additional information.

The following is deactivated when option Independent Axes is used:
• Collision detection

Note

The collision detection is deactivated on all axes in a motion planner if one
of them is run in independent mode.

244 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.1.1 Overview
Continued

6.1.2 System parameters

About the system parameters
This is a brief description of each parameter in the option Independent Axis. For
more information, see the respective parameter in Technical reference
manual - System parameters.

Arm
These parameters belongs to the type Arm in the topic Motion.

DescriptionParameter

Flag that determines if independent mode is allowed for the axis.Independent Joint

Defines the upper limit of the working area for the joint when operating
in independent mode.

Independent Upper
Joint Bound

Defines the lower limit of the working area for the joint when operating
in independent mode.

Independent Lower
Joint Bound

Transmission
These parameters belong to the type Transmission in the topic Motion.

DescriptionParameter

Independent Axes requires high resolution in transmission gear ratio,
which is therefore defined as Transmission Gear High divided by
Transmission Gear Low. If no smaller number can be used, the
transmission gear ratio will be correct if Transmission Gear High is
set to the number of cogs on the robot axis side, and Transmission
Gear Low is set to the number of cogs on the motor side.

Transmission Gear
High

See Transmission Gear High.Transmission Gear
Low

Application manual - Controller software IRC5 245
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.1.2 System parameters

6.1.3 RAPID components

Data types
There are no data types for Independent Axis.

Instructions
This is a brief description of each instruction in Independent Axis. For more
information, see respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.
An independent move instruction is executed immediately, even if the axis is being
moved at the time. If a new independent move instruction is executed before the
last one is finished, the new instruction immediately overrides the old one.

DescriptionInstruction

IndAMove (Independent Absolute position Movement) change an
axis to independent mode and move the axis to a specified position.

IndAMove

IndCMove (Independent Continuous Movement) change an axis to
independent mode and start moving the axis continuously at a spe-
cified speed.

IndCMove

IndDMove (Independent Delta position Movement) change an axis to
independent mode and move the axis a specified distance.

IndDMove

IndRMove (Independent Relative position Movement) change a rota-
tional axis to independent mode and move the axis to a specific pos-
ition within one revolution.

IndRMove

Because the revolution information in the position is omitted,
IndRMove never rotates more than one axis revolution.

IndReset is used to change an independent axis back to normal
mode.

IndReset

IndReset can move the measurement system for a rotational axis a
number of axis revolutions. The resolution of positions is decreased
when moving away from logical position 0, and winding the axis back
would take time. By moving the measurement system the resolution
is maintained without physically winding the axis back.
Both the independent axis and the robot must stand still when calling
IndReset.

Functions
This is a brief description of each function in Independent Axis. For more
information, see respective function in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

IndInposindicates whether an axis has reached the selected position.IndInpos

IndSpeed indicates whether an axis has reached the selected speed.IndSpeed

246 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.1.3 RAPID components

6.1.4 Code examples

Save cycle time
An object in station A needs welding in two places. The external axis for station A
can turn the object in position for the second welding while the robot is welding
on another object. This saves cycle time compared to letting the robot wait while
the external axis moves.

!Perform first welding in station A

!Call subroutine for welding

weld_stationA_1;

!Move the object in station A, axis 1, with

!independent movement to position 90 degrees

!at the speed 20 degrees/second

IndAMove Station_A,1\ToAbsNum:=90,20;

!Let the robot perform another task while waiting

!Call subroutine for welding

weld_stationB_1;

!Wait until the independent axis is in position

WaitUntil IndInpos(Station_A,1) = TRUE;

WaitTime 0.2;

!Perform second welding in station A

!Call subroutine for welding

weld_stationA_2;

Polish by rotating axis 6
To polish an object the robot axis 6 can be set to continuously rotate.
Set robot axis 6 to independent mode and continuously rotate it. Move the robot
over the area you want to polish. Stop movement for both robot and independent
axis before changing back to normal mode. After rotating the axis many revolutions,
reset the measurement system to maintain the resolution.
Note that, for this example to work, the parameter Independent Joint for rob1_6
must be set to Yes.

PROC Polish()

!Change axis 6 of ROB_1 to independent mode and

!rotate it with 180 degrees/second

IndCMove ROB_1, 6, 180;

!Wait until axis 6 is up to speed

WaitUntil IndSpeed(ROB_1,6\InSpeed);

WaitTime 0.2;

!Move robot where you want to polish

MoveL p1,v10, z50, tool1;

MoveL p2,v10, fine, tool1;

Continues on next page
Application manual - Controller software IRC5 247
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.1.4 Code examples

!Stop axis 6 and wait until it's still

IndCMove ROB_1, 6, 0;

WaitUntil IndSpeed(ROB_1,6\ZeroSpeed);

WaitTime 0.2;

!Change axis 6 back to normal mode and

!reset measurement system (close to 0)

IndReset ROB_1, 6 \RefNum:=0 \Short;

ENDPROC

Reset an axis
This is an example of how to reset the measurement system for axis 1 in station
A. The measurement system will change a whole number of revolutions, so it is
close to zero (±180°).

IndReset Station_A, 1 \RefNum:=0 \Short;

248 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.1.4 Code examples
Continued

6.2 Path Recovery [611-1]

6.2.1 Overview

Purpose
Path Recovery is used to store the current movement path, perform some robot
movements and then restore the interrupted path. This is useful when an error or
interrupt occurs during the path movement. An error handler or interrupt routine
can perform a task and then recreate the path.
For applications like arc welding and gluing, it is important to continue the work
from the point where the robot left off. If the robot started over from the beginning,
then the work piece would have to be scrapped.
If a process error occurs when the robot is inside a work piece, moving the robot
straight out might cause a collision. By using the path recorder, the robot can
instead move out along the same path it came in.

What is included
The RobotWare option Path Recovery gives you access to:

• instructions to suspend and resume the coordinated synchronized movement
mode on the error or interrupt level.

• a path recorder, with the ability to move the TCP out from a position along
the same path it came.

Limitations
The instructions StorePath and RestoPath only handles movement path data.
The stop position must also be stored.
Movements using the path recorder has to be performed on trap-level, i.e.
StorePath has to be executed prior to PathRecMoveBwd.

Application manual - Controller software IRC5 249
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.1 Overview

6.2.2 RAPID components

Data types
This is a brief description of each data type in Path Recovery. For more information,
see the respective data type in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionData type

pathrecid is used to identify a breakpoint for the path recorder.pathrecid

Instructions
This is a brief description of each instruction in Path Recovery. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

StorePath is used to store the movement path being executed when
an error or interrupt occurs.

StorePath

StorePath is included in RobotWare base.

RestoPath is used to restore the path that was stored by StorePath.RestoPath
RestoPath is included in RobotWare base.

PathRecStart is used to start recording the robot’s path. The path
recorder will store path information during execution of the robot
program.

PathRecStart

PathRecStop is used to stop recording the robot's path.PathRecStop

PathRecMoveBwd is used to move the robot backwards along a recor-
ded path.

PathRecMoveBwd

PathRecMoveFwd is used to move the robot back to the position
where PathRecMoveBwd was executed.

PathRecMoveFwd

It is also possible to move the robot partly forward by supplying an
identifier that has been passed during the backward movement.

SyncMoveSuspend is used to suspend synchronized movements
mode and set the system to independent movement mode.

SyncMoveSuspend

SyncmoveResume is used to go back to synchronized movements
from independent movement mode.

SyncMoveResume

Functions
This is a brief description of each function in Path Recovery. For more information,
see the respective function in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionFunction

PathRecValidBwd is used to check if the path recorder is active and
if a recorded backward path is available.

PathRecValidBwd

PathRecValidFwd is used to check if the path recorder can be used
to move forward. The ability to move forward with the path recorder
implies that the path recorder must have been ordered to move
backwards earlier.

PathRecValidFwd

250 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.2 RAPID components

6.2.3 Store current path

Why store the path?
The simplest way to use Path Recovery is to only store the current path to be able
to restore it after resolving an error or similar action.
Let's say that an error occur during arc welding. To resolve the error the robot
might have to be moved away from the part. When the error is resolved, the welding
should be continued from the point it left off. This is solved by storing the path
information and the position of the robot before moving away from the path. The
path can then be restored and the welding resumed after the error has been
handled.

Basic approach
This is the general approach for storing the current path:

1 At the start of an error handler or interrupt routine:
stop the movement
store the movement path
store the stop position

2 At the end of the error handler or interrupt routine:
move to the stored stop position
restore the movement path
start the movement

Example
This is an example of how to use Path Recovery in error handling. First the path
and position is stored, the error is corrected and then the robot is moved back in
position and the path is restored.

MoveL p100, v100, z10, gun1;

...

ERROR

IF ERRNO=MY_GUN_ERR THEN

gun_cleaning();

ENDIF

...

PROC gun_cleaning()

VAR robtarget p1;

!Stop the robot movement, if not already stopped.

StopMove;

!Store the movement path and current position

StorePath;

p1 := CRobT(\Tool:=gun1\WObj:=wobj0);

!Correct the error

MoveL pclean, v100, fine, gun1;

Continues on next page
Application manual - Controller software IRC5 251
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.3 Store current path

...

!Move the robot back to the stored position

MoveL p1, v100, fine, gun1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

Store path in a MultiMove system
In a MultiMove system the robots can keep the synchronized movement mode
after StorePath with the argument KeepSync. However the robots can’t switch
from independent mode to synchronized mode, only the other way around.
After a Multimove system is set with the argument KeepSync, the system can
change between synchronized, semi coordinated and independent mode on the
StorePath level. The changes are made with the instructions SyncMoveResume
and SyncMoveSuspend.

SyncArc example with coordinated synchronized movement
This is an example on how to use Path Recovery and keep synchronized mode in
the error handler for a MultiMove system. Two robots perform arc welding on the
same work piece. To make the example simple and general, we use move
instructions instead of weld instructions. The work object is rotated by a positioner.
For more information on the SyncArc example, seeApplicationmanual - MultiMove.

T_ROB1 task program
MODULE module1

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1", [[0, 0, 0],
[1, 0, 0 ,0]], [[0, 0, 250], [1, 0, 0, 0]]];

TASK PERS tooldata tool1 := ...

CONST robtarget p100 := ...

CONST robtarget p199 := ...

PROC main()

...

SyncMove;

ENDPROC

PROC SyncMove()

MoveJ p100, v1000, z50, tool1;

WaitSyncTask sync1, all_tasks;

MoveL p101, v500, fine, tool1;

SyncMoveOn sync2, all_tasks;

MoveL p102\ID:=10, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p103, p104\ID:=20, v300, z10, tool1 \WObj:=wobj_stn1;

MoveL p105\ID:=30, v300, z10, tool1 \WObj:=wobj_stn1;

Continues on next page
252 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.3 Store current path
Continued

MoveC p106, p101\ID:=40, v300, fine, tool1 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p199, v1000, fine, tool1;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_cleaning()

VAR robtarget p1;

!Store the movement path and current position

! and keep syncronized mode.

StorePath \KeepSync;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj_stn1);

!Correct the error

MoveL pclean1 \ID:=50, v100, fine, tool1 \WObj:=wobj_stn1;

...

!Move the robot back to the stored position

MoveL p1 \ID:=60, v100, fine, tool1 \WObj:=wobj_stn1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_ROB2 task program
MODULE module2

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

PERS wobjdata wobj_stn1;

TASK PERS tooldata tool2 := ...

CONST robtarget p200 := ...

CONST robtarget p299 := ...

PROC main()

...

SyncMove;

ENDPROC

PROC SyncMove()

MoveJ p200, v1000, z50, tool2;

WaitSyncTask sync1, all_tasks;

MoveL p201, v500, fine, tool2;

SyncMoveOn sync2, all_tasks;

MoveL p202\ID:=10, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p203, p204\ID:=20, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p205\ID:=30, v300, z10, tool2 \WObj:=wobj_stn1;

Continues on next page
Application manual - Controller software IRC5 253
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.3 Store current path

Continued

MoveC p206, p201\ID:=40, v300, fine, tool2 \WObj:=wobj_stn1;

SyncMoveOff sync3;

MoveL p299, v1000, fine, tool2;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_cleaning()

VAR robtarget p2;

!Store the movement path and current position.

StorePath \KeepSync;

p2 := CRobT(\Tool:=tool2 \WObj:=wobj_stn1);

!Correct the error

MoveL pclean2 \ID:=50, v100, fine, tool2 \WObj:=wobj_stn1;

...

!Move the robot back to the stored position.

MoveL p2 \ID:=60, v100, fine, tool2 \WObj:=wobj_stn1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_STN1 task program
MODULE module3

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

CONST jointtarget angle_neg20 :=[[9E9, 9E9, 9E9, 9E9, 9E9,
9E9], [-20, 9E9, 9E9, 9E9, 9E9, 9E9]];

...

CONST jointtarget angle_340 :=[[9E9, 9E9, 9E9, 9E9, 9E9, 9E9],[
340, 9E9, 9E9, 9E9, 9E9, 9E9]];

PROC main()

...

SyncMove;

...

ENDPROC

PROC SyncMove()

MoveExtJ angle_neg20, vrot50, fine;

WaitSyncTask sync1, all_tasks;

! Wait for the robots

SyncMoveOn sync2, all_tasks;

MoveExtJ angle_20\ID:=10, vrot100, z10;

MoveExtJ angle_160\ID:=20, vrot100, z10;

MoveExtJ angle_200\ID:=30, vrot100, z10;

Continues on next page
254 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.3 Store current path
Continued

MoveExtJ angle_340\ID:=40, vrot100, fine;

SyncMoveOff sync3;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_cleaning()

VAR jointtarget resume_angle;

!Store the movement path and current angle.

StorePath \KeepSync;

resume_angle := CJointT();

!Correct the error

MoveExtJ clean_angle \ID:=50, vrot100, fine;

...

!Move the robot back to the stored position.

MoveExtJ resume_angle \ID:=60, vrot100, fine;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

Suspend and resume synchronized movements in the SyncArc example
SyncMoveSuspend is used to suspend synchronized movements mode and set
the system to independent or semi coordinated movement mode.
SyncMoveResume is used to go back once more to synchronized movements.
These instructions can only be used after StorePath\KeepSync has been
executed.

T_ROB1
PROC gun_cleaning()

VAR robtarget p1;

!Store the movement path and current position

! and keep syncronized mode.

StorePath \KeepSync;

p1 := CRobT(\Tool:=tool1 \WObj:=wobj_stn1);

!Move in synchronized motion mode

MoveL p104 \ID:=50, v100, fine, tool1 \WObj:=wobj_stn1;

SyncMoveSuspend;

!Move in independent mode

MoveL pclean1, v100, fine, tool1;

...

!Move the robot back to the stored position

SyncMoveResume;

MoveL p1 \ID:=60, v100, fine, tool1 \WObj:=wobj_stn1;

!Restore the path and start the movement

Continues on next page
Application manual - Controller software IRC5 255
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.3 Store current path

Continued

RestoPath;

StartMove;

RETRY;

ENDPROC

T_ROB2
PROC gun_cleaning()

VAR robtarget p2;

!Store the movement path and current position.

StorePath \KeepSync;

p2 := CRobT(\Tool:=tool2 \WObj:=wobj_stn1);

!Move in synchronized motion mode

MoveL p104 \ID:=50, v100, fine, tool2 \WObj:=wobj_stn1;

SyncMoveSuspend;

!Move in independent mode

MoveL pclean2 v100, fine, tool2;

...

!Move the robot back to the stored position.

SyncMoveResume;

!Move in synchronized motion mode

MoveL p2 \ID:=60, v100, fine, tool2 \WObj:=wobj_stn1;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

T_STN1
PROC gun_cleaning()

VAR jointtarget resume_angle;

!Store the movement path and current angle.

StorePath \KeepSync;

resume_angle := CJointT();

!Move in synchronized motion mode

MoveExtJ p1clean_angle \ID:=50, vrot100, fine;

SyncMoveSuspend;

! Move in independent mode

MoveExtJ p2clean_angle,vrot, fine;

...

!Move the robot back to the stored position.

SyncMoveResume;

! Move in synchronized motion mode

MoveExtJ resume_angle \ID:=60, vrot100, fine;

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

256 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.3 Store current path
Continued

6.2.4 Path recorder

What is the path recorder
The path recorder can memorize a number of move instructions. This memory can
then be used to move the robot backwards along that same path.

How to use the path recorder
This is the general approach for using the path recorder:

1 Start the path recorder
2 Move the robot with regular move, or process, instructions
3 Store the current path
4 Move backwards along the recorded path
5 Resolve the error
6 Move forward along the recorded path
7 Restore the interrupted path

Lift the tool
When the robot moves backward in its own track, you may want to avoid scraping
the tool against the work piece. For a process like arc welding, you want to stay
clear of the welding seam.
By using the argument ToolOffs in the instructions PathRecMoveBwd and
PathRecMoveFwd, you can set an offset for the TCP. This offset is set in tool
coordinates, which means that if it is set to [0,0,10] the tool will be 10mm from the
work object when it moves back along the recorded path.

xx0400000828

Note

When a MultiMove system is in synchronized mode all tasks must use ToolOffs
if a tool is going to be lifted.
However if you only want to lift one tool, set ToolOffs=[0,0,0] in the other
tasks.

Simple example
If an error occurs between p1 and p4, the robot will return to p1 where the error
can be resolved. When the error has been resolved, the robot continues from where
the error occurred.

Continues on next page
Application manual - Controller software IRC5 257
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.4 Path recorder

When p4 is reached without any error, the path recorder is switched off. The robot
then moves from p4 to p5 without the path recorder.

...

VAR pathrecid start_id;

...

MoveL p1, vmax, fine, tool1;

PathRecStart start_id;

MoveL p2, vmax, z50, tool1;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, fine, tool1;

PathRecStop \Clear;

MoveL p5, vmax, fine, tool1;

ERROR

StorePath;

PathRecMoveBwd;

! Fix the problem

PathRecMoveFwd;

RestoPath;

StartMove;

RETRY;

ENDIF

...

Complex example
In this example, the path recorder is used for two purposes:

• If an error occurs, the operator can choose to back up to p1 or to p2. When
the error has been resolved, the interrupted movement is resumed.

• Even if no error occurs, the path recorder is used to move the robot from p4
to p1. This technique is useful when the robot is in a narrow position that is
difficult to move out of.

Note that if an error occurs during the first move instruction, between p1 and p2,
it is not possible to go backwards to p2. If the operator choose to go back to p2,
PathRecValidBwd is used to see if it is possible. Before the robot is moved forward
to the position where it was interrupted, PathRecValidFwd is used to see if it is
possible (if the robot never backed up it is already in position).

...

VAR pathrecid origin_id;

VAR pathrecid corner_id;

VAR num choice;

...

MoveJ p1, vmax, z50, tool1;

PathRecStart origin_id;

MoveJ p2, vmax, z50, tool1;

PathRecStart corner_id;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, fine, tool1;

! Use path record to move safely to p1

Continues on next page
258 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.4 Path recorder
Continued

StorePath;

PathRecMoveBwd \ID:=origin_id

\ToolOffs:=[0,0,10];

RestoPath;

PathRecStop \Clear;

Clear Path;

Start Move;

ERROR

StorePath;

! Ask operator how far to back up

TPReadFK choice,"Extract to:", stEmpty, stEmpty,

stEmpty, "Origin", "Corner";

IF choice=4 THEN

! Back up to p1

PathRecMoveBwd \ID:=origin_id

\ToolOffs:=[0,0,10];

ELSEIF choice=5 THEN

! Verify that it is possible to back to p2,

IF PathRecValidBwd(\ID:=corner_id) THEN

! Back up to p2

PathRecMoveBwd \ID:=corner_id

\ToolOffs:=[0,0,10];

ENDIF

ENDIF

! Fix the problem

! Verify that there is a path record forward

IF PathRecValidFwd() THEN

! Return to where the path was interrupted

PathRecMoveFwd \ToolOffs:=[0,0,10];

ENDIF

! Restore the path and resume movement

RestoPath;

StartMove;

RETRY;

...

Resume path recorder
If the path recorder is stopped, it can be started again from the same position
without loosing its history.
In the example below, the PathRecMoveBwd instruction will back the robot to p1.
If the robot had been in any other position than p2 when the path recorder was
restarted, this would not have been possible.

Continues on next page
Application manual - Controller software IRC5 259
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.4 Path recorder

Continued

For more information, see the section about PathRecStop in Technical reference
manual - RAPID Instructions, Functions and Data types.

...

MoveL p1, vmax, z50, tool1;

PathRecStart id1;

MoveL p2, vmax, z50, tool1;

PathRecStop;

MoveL p3, vmax, z50, tool1;

MoveL p4, vmax, z50, tool1;

MoveL p2, vmax, z50, tool1;

PathRecStart id2;

MoveL p5, vmax, z50, tool1;

StorePath;

PathRecMoveBwd \ID:=id1;

RestoPath;

...

SyncArc example with coordinated synchronized movement
This is an example on how to use Path Recorder in error handling for a MultiMove
system.
In this example two robots perform arc welding on the same work piece. To make
the example simple and general, we use move instructions instead of weld
instructions. The work object is rotated by a positioner.
For more information on the SyncArc example, seeApplicationmanual - MultiMove.

T_ROB1 task program
MODULE module1

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3} := [["T_ROB1"],["T_ROB2"],["T_STN1"]];

PERS wobjdata wobj_stn1 := [FALSE, FALSE, "STN_1",[[0, 0, 0],
[1, 0, 0 ,0]], [[0, 0,250], [1, 0, 0, 0]]];

TASK PERS tooldata tool1 := ...

CONST robtarget p100 := ...

CONST robtarget p199 := ...

PROC main()

...

SyncMove;

ENDPROC

PROC SyncMove()

WaitSyncTask sync1, all_tasks;

MoveJ p100, v1000, z50, tool1;

! Start recording

PathRecStart HomeROB1;

MoveL p101, v500, fine, tool1;

SyncMoveOn sync2, all_tasks;

MoveL p102\ID:=10, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p103, p104\ID:=20, v300, z10, tool1 \WObj:=wobj_stn1;

Continues on next page
260 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.4 Path recorder
Continued

MoveL p105\ID:=30, v300, z10, tool1 \WObj:=wobj_stn1;

MoveC p106, p101\ID:=40, v300, fine, tool1 \WObj:=wobj_stn1;

!Stop recording

PathRecStop \Clear;

SyncMoveOff sync3;

MoveL p199, v1000, fine, tool1;

ERROR

! Weld error in this program task

IF ERRNO = AW_WELD_ERR THEN

gun_cleaning();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_cleaning()

VAR robtarget p1;

!Store the movement path

IF IsSyncMoveOn() THEN

StorePath \KeepSync;

ELSE

StorePath;

ENDIF

!Move this robot backward to p100.

PathRecMoveBwd \ID:=HomeROB1 \ToolOffs:=[0,0,10];

!Correct the error

MoveJ pclean1 ,v100, fine, tool1;

...

!Move the robot back to p100

MoveJ p100, v100, fine, tool1;

PathRecMoveFwd \ToolOffs:=[0,0,10];

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_ROB2 task program
MODULE module2

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

PERS wobjdata wobj_stn1;

TASK PERS tooldata tool2 := ...

CONST robtarget p200 := ...

CONST robtarget p299 := ...

PROC main()

...

SyncMove;

ENDPROC

Continues on next page
Application manual - Controller software IRC5 261
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.4 Path recorder

Continued

PROC SyncMove()

WaitSyncTask sync1, all_tasks;

MoveJ p200, v1000, z50, tool2;

PathRecStart HomeROB2;

MoveL p201, v500, fine, tool2;

SyncMoveOn sync2, all_tasks;

MoveL p202\ID:=10, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p203, p204\ID:=20, v300, z10, tool2 \WObj:=wobj_stn1;

MoveL p205\ID:=30, v300, z10, tool2 \WObj:=wobj_stn1;

MoveC p206, p201\ID:=40, v300, fine, tool2 \WObj:=wobj_stn1;

PathRecStop \Clear;

SyncMoveOff sync3;

MoveL p299, v1000, fine, tool2;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_move_out();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_move_out()

IF IsSyncMoveOn() THEN

StorePath \KeepSync;

ELSE

StorePath;

ENDIF

! Move this robot backward to p201

PathRecMoveBwd \ToolOffs:=[0,0,10];

! Wait for the other gun to get clean

PathRecMoveFwd \ToolOffs:=[0,0,10];

!Restore the path and start the movement

RestoPath;

StartMove;

RETRY;

ENDPROC

ENDMODULE

T_STN1 task program
MODULE module3

VAR syncident sync1;

VAR syncident sync2;

VAR syncident sync3;

PERS tasks all_tasks{3};

CONST jointtarget angle_neg20 :=[[9E9, 9E9, 9E9, 9E9, 9E9,
9E9], [-20, 9E9, 9E9, 9E9, 9E9, 9E9]];

...

CONST jointtarget angle_340 :=[[9E9, 9E9, 9E9, 9E9, 9E9, 9E9],[
340, 9E9, 9E9, 9E9,9E9, 9E9]];

PROC main()

...

SyncMove;

Continues on next page
262 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.4 Path recorder
Continued

...

ENDPROC

PROC SyncMove()

WaitSyncTask sync1, all_tasks;

MoveExtJ angle_neg20, vrot50, fine;

PathRecStart HomeSTN1;

SyncMoveOn sync2, all_tasks;

MoveExtJ angle_20\ID:=10, vrot100, z10;

MoveExtJ angle_160\ID:=20, vrot100, z10;

MoveExtJ angle_200\ID:=30, vrot100, z10;

MoveExtJ angle_340\ID:=40, vrot100, fine;

PathRecStop \Clear;

SyncMoveOff sync3;

ERROR

IF ERRNO = ERR_PATH_STOP THEN

gun_move_out();

ENDIF

UNDO

SyncMoveUndo;

ENDPROC

PROC gun_move_out()

!Store the movement

IF IsSyncMoveOn() THEN

StorePath \KeepSync;

ELSE

StorePath;

ENDIF

!Move the manipulator backward to angle_neg 20

PathRecMoveBwd \ToolOffs:=[0,0,0];

...

!Wait for the gun to get clean

PathRecMoveFwd \ToolOffs:=[0,0,0];

RestoPath;

StartMove;

RETRY;

ENDPROC

Application manual - Controller software IRC5 263
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.2.4 Path recorder

Continued

6.3 Path Offset [612-1]

6.3.1 Overview

Purpose
The purpose of Path Offset is to be able to make online adjustments of the robot
path according to input from sensors. With the set of instructions that Path Offset
offers, the robot path can be compared and adjusted with the input from sensors.

What is included
The RobotWare option Path Offset gives you access to:

• the data type corrdescr

• the instructions CorrCon, CorrDiscon, CorrClear and CorrWrite

• the function CorrRead

Basic approach
This is the general approach for setting up Path Offset. For a detailed example of
how this is done, see Code example on page 268.

1 Declare the correction generator.
2 Connect the correction generator.
3 Define a trap routine that determines the offset and writes it to the correction

generator.
4 Define an interrupt to frequently call the trap routine.
5 Call a move instruction using the correction. The path will be repeatedly

corrected.

Note

The instruction CorrWrite is intended with low speed and moderate values of
correction. Too aggressive values will be clamped. The correction values should
be tested in RobotStudio to confirm the performance.

Note

If two or more move instructions are called after each other with the \Corr switch,
it is important to know that all \Corr offsets are reset each time the robot starts
from a finepoint. So, when using finepoints, on the second Move instruction the
controller does not know that the path already has an offset. To avoid any strange
behavior it is recommended only to use zones together with the \Corr switch
and avoid finepoints.

Continues on next page
264 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.3.1 Overview

Limitations
It is possible to connect several correction generators at the same time (for instance
one for corrections along the Z axis and one for corrections along the Y axis).
However, it is not possible to connect more than 5 correction generators at the
same time.
After a controller restart, the correction generators have to be defined once again.
The definitions and connections do not survive a controller restart.
The instructions can only be used in motion tasks.

Application manual - Controller software IRC5 265
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.3.1 Overview

Continued

6.3.2 RAPID components

Data types
This is a brief description of each data type in the option Path Offset. For more
information, see the respective data type in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionData type

corrdescr is a correction generator descriptor that is used as the
reference to the correction generator.

corrdescr

Instructions
This is a brief description of each instruction in the option Path Offset. For more
information, see the respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

CorrCon activates path correction. Calling CorrCon will connect a
correction generator. Once this connection is made, the path can be
continuously corrected with new offset inputs (for instance from a
sensor).

CorrCon

CorrDiscon deactivates path correction. Calling CorrDiscon will
disconnect a correction generator.

CorrDiscon

CorrClear deactivate path correction. Calling CorrClear will dis-
connect all correction generators.

CorrClear

CorrWrite sets the path correction values. Calling CorrWrite will
set the offset values to a correction generator.

CorrWrite

Functions
This is a brief description of each function in the option Path Offset. For more
information, see the respective function in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionFunction

CorrRead reads the total correction made by a correction generator.CorrRead

266 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.3.2 RAPID components

6.3.3 Related RAPID functionality

The argument \Corr
The optional argument\Corrcan be set for some move instructions. This will enable
path corrections while the move instruction is executed.
The following instructions have the optional argument\Corr:

• MoveL
• MoveC
• SearchL
• SearchC
• TriggL (only if the controller is equipped with the base functionality Fixed

Position Events)
• TriggC (only if the controller is equipped with the base functionality Fixed

Position Events)
• CapL (only if the controller is equipped with the option Continuous Application

Platform)
• CapC (only if the controller is equipped with the option Continuous Application

Platform)
• ArcL (only if the controller is equipped with the option RobotWare Arc)
• ArcC (only if the controller is equipped with the option RobotWare Arc)

For more information on these instructions, see respective instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

Interrupts
To create programs using Path Offset, you need to be able to handle interrupts.
For more information on interrupts, see Technical reference manual - RAPID
Overview.

Application manual - Controller software IRC5 267
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.3.3 Related RAPID functionality

6.3.4 Code example

Linear movement with correction
This is a simple example of how to program a linear path with online path correction.
This is done by having an interrupt 5 times per second, calling a trap routine which
makes the offset correction.

Program code
VAR intnum int_no1;

VAR corrdescr id;

VAR pos sens_val;

PROC PathRoutine()

!Connect to the correction generator

CorrCon id;

!Setup a 5 Hz timer interrupt.

CONNECT int_no1 WITH UpdateCorr;

ITimer\Single, 0.2, int_no1

!Position for start of contour tracking

MoveJ p10,v100,z10,tool1;

!Run MoveL with correction.

MoveL p20,v100,z10,tool1\Corr;

!Remove the correction generator.

CorrDiscon id;

!Remove the timer interrupt.

IDelete int_no1;

ENDPROC

TRAP UpdateCorr

!Call a routine that read the sensor

ReadSensor sens_val.x, sens_val.y, sens_val.z;

!Execute correction

CorrWrite id, sens_val;

!Setup interrupt again

IDelete int_no1;

CONNECT int_no1 WITH UpdateCorr;

ITimer\Single, 0.2, int_no1;

ENDTRAP

268 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

6 Motion functions
6.3.4 Code example

7 Motion Supervision
7.1 Collision Detection [613-1]

7.1.1 Overview

Purpose
Collision Detection is a software option that reduces collision impact forces on the
robot. This helps protecting the robot and external equipment from severe damage.

WARNING

Collision Detection cannot protect equipment from damage at a full speed
collision.

Description
The software option Collision Detection identifies a collision by high sensitivity,
model based supervision of the robot. Depending on what forces you deliberately
apply on the robot, the sensitivity can be tuned as well as turned on and off.
Because the forces on the robot can vary during program execution, the sensitivity
can be set on-line in the program code.
Collision detection is more sensitive than the ordinary supervision and has extra
features. When a collision is detected, the robot will immediately stop and relieve
the residual forces by moving in reversed direction a short distance along its path.
After a collision error message has been acknowledged, the movement can continue
without having to press Motors on on the controller.

What is included
The RobotWare option Collision Detection gives you access to:

• system parameters for defining if Collision Detection should be active and
how sensitive it should be (without the option you can only turn detection on
and off for Auto mode)

• instruction for on-line changes of the sensitivity:MotionSup

Basic approach
Collision Detection is by default always active when the robot is moving. In many
cases this means that you can use Collision Detection without having to take any
active measures.
If necessary, you can turn Collision Detection on and off or change its sensitivity
in two ways:

• temporary changes can be made on-line with the RAPID instruction
MotionSup

• permanent changes are made through the system parameters.

Continues on next page
Application manual - Controller software IRC5 269
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.1 Overview

Collision detection for YuMi robots
As default YuMi will have collision detection active at stand still. It also has another
stop ramp compared to other robots to be able to release clamping forces.

Note

If the tool data is wrong, false collisions might be triggered and the robot arm
might drop a short distance during the stop ramp.

Collision detection for MultiMove robots
The default behavior when a collision is detected for one robot in a MultiMove
configuration is that all robots are stopped.
One reason for this behavior is that when a collision is detected, there is a big risk
that it was two robots that collided. Another reason is that if one robot stops and
another continues, this might cause another collision.
This behavior can be changed with the system parameter Ind collision stop without
brake. If this parameter is set to TRUE and the robots are running in independent
RAPID tasks when a collision is detected, only the robot that detected the collision
will be stopped.

270 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.1 Overview
Continued

7.1.2 Limitations

Load definition
In order to detect collisions properly, the payload of the robot must be correctly
defined.

Tip

Use Load Identification to define the payload. For more information, seeOperating
manual - IRC5 with FlexPendant.

Robot axes only
Collision Detection is only available for the robot axes. It is not available for track
motions, orbit stations, or any other external axes.

Independent joint
The collision detection is deactivated when at least one axis is run in independent
joint mode. This is also the case even when it is an external axis that is run as an
independent joint.

Soft servo
The collision detection may trigger without a collision when the robot is used in
soft servo mode. Therefore, it is recommended to turn the collision detection off
when the robot is in soft servo mode.

No change until the robot moves
If the RAPID instruction MotionSup is used to turn off the collision detection, this
will only take effect once the robot starts to move. As a result, the digital output
MotSupOn may temporarily have an unexpected value at program start before the
robot starts to move.

Reversed movement distance
The distance the robot is reversed after a collision is proportional to the speed of
the motion before the collision. If repeated low speed collisions occur, the robot
may not be reversed sufficiently to relieve the stress of the collision. As a result,
it may not be possible to jog the robot without the supervision triggering. In this
case, turn Collision Detection off temporarily and jog the robot away from the
obstacle.

Delay before reversed movement
In the event of a stiff collision during program execution, it may take a few seconds
before the robot starts the reversed movement.

Robot on track motion
If the robot is mounted on a track motion the collision detection should be
deactivated when the track motion is moving. If it is not deactivated, the collision
detection may trigger when the track moves, even if there is no collision.

Application manual - Controller software IRC5 271
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.2 Limitations

7.1.3 What happens at a collision

Overview
When the collision detection is triggered, the robot will stop as quickly as possible.
Then it will move in the reverse direction to remove residual forces. The program
execution will stop with an error message. The robot remains in the state motors
on so that program execution can be resumed after the collision error message
has been acknowledged.
A typical collision is illustrated below.

Collision illustration

xx0300000361

Robot behavior after a collision
This list shows the order of events after a collision. For an illustration of the
sequence, see the diagram below.

then ...When ...

the motor torques are reversed and the mechanical brakes
applied in order to stop the robot

the collision is detected

the robot moves in reversed direction a short distance along
the path in order to remove any residual forces which may
be present if a collision or jam occurred

the robot has stopped

the robot stops again and remains in the motors on statethe residual forces are re-
moved

Continues on next page
272 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.3 What happens at a collision

Speed and torque diagram

en0300000360

Application manual - Controller software IRC5 273
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.3 What happens at a collision

Continued

7.1.4 Additional information

Motion error handling
For more information regarding error handling for a collision, see Technical
reference manual - RAPID kernel.

274 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.4 Additional information

7.1.5 Configuration and programming facilities

7.1.5.1 System parameters

About system parameters
Most of the system parameters for Collision Detection do not require a restart to
take effect.
For more information about the parameters, see Technical reference
manual - System parameters.

Motion Supervision
These parameters belong to the type Motion Supervision in the topic Motion.

DescriptionParameter

Turn the collision detection On or Off for program execution.Path Collision Detection
Path Collision Detection is by default set to On.

Turn the collision detection On or Off for jogging.Jog Collision Detection
Jog Collision Detection is by default set to On.

Modifies the Collision Detection supervision level for program
execution by the specified percentage value. A large percent-
age value makes the function less sensitive.

Path Collision Detection
Level

Path Collision Detection Level is by default set to 100%.

Modifies the Collision Detection supervision level for jogging
by the specified percentage value. A large percentage value
makes the function less sensitive.

Jog Collision Detection Level

Jog Collision Detection Level is by default set to 100%.

Defines how much the robot moves in reversed direction on
the path after a collision, specified in seconds. If the robot
moved fast before the collision it will move away a larger
distance than if the speed was slow.

Collision Detection Memory

Collision Detection Memory is by default set to 75 ms.

Turns the supervision for the loose arm detection on or off
for IRB 340 and IRB 360. A loose arm will stop the robot and
cause an error message.

Manipulator Supervision

Manipulator Supervision is by default set to On.

Modifies the supervision level for the loose arm detection for
the manipulators IRB 340 and IRB 360. A large value makes
the function less sensitive.

Manipulator Supervision
Level

Manipulator Supervision Level is by default value set to 100%.

Motion Planner
These parameters belong to the type Motion Planner in the topic Motion.

DescriptionParameter

Set the maximum level to which the total collision detection
tune level can be changed. It is by default set to 300%.

Motion Supervision Max
Level

Continues on next page
Application manual - Controller software IRC5 275
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.5.1 System parameters

Motion System
This parameter belongs to the type Motion System in the topic Motion.

DescriptionParameter

This parameter is only valid for systems using the MultiMove
option. If this parameter is set to TRUE, detected collisions will
be handled independently in RAPID tasks that are executed
independently.

Ind collision stop without
brake

A restart is required for this parameter to take effect.

General RAPID
These parameters belong to the type General RAPID in the topic Controller.

DescriptionParameter

Enables RAPID error handling for collision. Collision Error
Handler is default set to Off.

Collision Error Handler

For more information regarding error handling for a collision,
see Technical reference manual - RAPID kernel

276 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.5.1 System parameters
Continued

7.1.5.2 RAPID components

Instructions
This is a brief description of the instructions in Collision Detection. For more
information, see respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

MotionSup is used to:
• activate or deactivate Collision Detection. This can only be done

if the parameter Path Collision Detection is set to On.
• modify the supervision level with a specified percentage value

(1-300%). A large percentage value makes the function less
sensitive.

MotionSup

Application manual - Controller software IRC5 277
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.5.2 RAPID components

7.1.5.3 Signals

Digital outputs
This is a brief description of the digital outputs in Collision Detection. For more
information, see respective digital output in Technical reference manual - System
parameters.

DescriptionDigital output

MotSupOn is high when Collision Detection is active and low when it
is not active.

MotSupOn

Note that a change in the state takes effect when a motion starts. Thus,
if Collision Detection is active and the robot is moving, MotSupOn is
high. If the robot is stopped and Collision Detection is turned off, Mot-
SupOn is still high. When the robot starts to move,MotSupOn switches
to low.
Before the first Motors On order after a restart of the robot controller,
MotSupOnwill reflect the value of the corresponding system parameter
Path Collision Detection:

• If Path Collision Detection is set to On, MotSupOn will be high.
• If Path Collision Detection is set to Off, MotSupOn will be low.

MotSupTrigg goes high when the collision detection triggers. It stays
high until the error code is acknowledged from the FlexPendant.

MotSupTrigg

278 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.5.3 Signals

7.1.6 How to use Collision Detection

7.1.6.1 Set up system parameters

Activate supervision
To be able to use Collision Detection during program execution, the parameter
Path Collision Detection must be set to On.
To be able to use Collision Detection during jogging, the parameter Jog Collision
Detection must be set to On.

Define supervision levels
Set the parameter Path Collision Detection Level to the percentage value you want
as default during program execution.
Set the parameter Jog Collision Detection Level to the percentage value you want
as default during jogging.

Application manual - Controller software IRC5 279
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.6.1 Set up system parameters

7.1.6.2 Adjust supervision from FlexPendant

Speed adjusted supervision level
Collision Detection uses a variable supervision level. At low speeds it is more
sensitive than at high speeds. For this reason, no tuning of the function should be
required by the user during normal operating conditions. However, it is possible
to turn the function on and off and to tune the supervision levels.
Separate tuning parameters are available for jogging and program execution. These
parameters are described in System parameters on page 275.

Set jog supervision on FlexPendant
On the FlexPendant, select Control Panel from the ABB menu and then tap
Supervision.
Supervision can be turned on or off and the sensitivity can be adjusted for both
programmed paths and jogging. The sensitivity level is set in percentage. A large
value makes the function less sensitive.
If the motion supervision for jogging is turned off in the dialog box and a program
is executed, Collision Detection can still be active during execution of the program.

Note

The supervision settings correspond to system parameters of the type Motion
Supervision. These can be set using the supervision settings on the FlexPendant,
as described above. They can also be changed using RobotStudio or FlexPendant
configuration editor or Quickset Mechanical unit menu.

280 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.6.2 Adjust supervision from FlexPendant

7.1.6.3 Adjust supervision from RAPID program

Default values
If Collision Detection is activated with the system parameters, it is by default active
during program execution with the tune value 100%. These values are set
automatically:

• when using the restart mode Reset system.
• when a new program is loaded.
• when starting program execution from the beginning.

Note

If tune values are set in the system parameters and in the RAPID instruction,
both values are taken into consideration.
Example: If the tune value in the system parameters is set to 150% and the tune
value is set to 200% in the RAPID instruction the resulting tune level will be 300%.

Temporarily deactivate supervision
If external forces will affect the robot during a part of the program execution,
temporarily deactivate the supervision with the following instruction:

MotionSup \Off;

Reactivate supervision
If the supervision has been temporarily deactivated, it can be activated with the
following instruction:

MotionSup \On;

Note

If the supervision is deactivated with the system parameters, it cannot be activated
with RAPID instructions.

Tuning
The supervision level can be tuned during program execution with the instruction
MotionSup. The tune values are set in percent of the basic tuning where 100%
corresponds to the basic values. A higher percentage gives a less sensitive system.
This is an example of an instruction that increase the supervision level to 200%:

MotionSup \On \TuneValue:=200;

Application manual - Controller software IRC5 281
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.6.3 Adjust supervision from RAPID program

7.1.6.4 How to avoid false triggering

About false triggering
Because the supervision is designed to be very sensitive, it may trigger if the load
data is incorrect or if there are large process forces acting on the robot.

Actions to take

then ...If ...

use Load Identification to define it. For more information, see
Operating manual - IRC5 with FlexPendant.

the payload is incorrectly
defined

increase supervision levelthe payload has large mass
or inertia

manually define the arm load or increase supervision levelthe arm load (cables or simil-
ar) cause trigger

increase the supervision level for jogging and program exe-
cution in steps of 30 percent until you no longer receive the
error code.

the application involves
many external process
forces

use the instruction MotionSup to raise the supervision level
or turn the function off temporarily.

the external process forces
are only temporary

turn off Collision Detection.everything else fails

282 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.6.4 How to avoid false triggering

7.1.7 Collision Avoidance

Introduction
The function Collision Avoidance monitors a detailed geometric model of the robot.
By defining additional geometrical models of bodies in the robot workarea, the
controller will warn about a predicted collision and stops the robot if two bodies
come too close to each other. The system parameter Coll-Pred Safety Distance
determines at what distance the two objects are considered to be in collision.
The functionCollision Avoidance is useful for example when setting up and testing
programs, or for programs where positions are not static but created from sensors,
such as cameras (non-deterministic programs). By using trigger-signals (see Trigger
signals on page 284), Collision Avoidance can be used for implementing safe
workspace sharing between multiple robots.
Besides the robot itself the function will monitor up 10 objects that is created via
the configurator in RobotStudio. Typical objects to be monitored are tool mounted
on the robot flange, additional equipment mounted on the robot arm (typically axis
3) or static volume around the robot.
The geometric models are set up in RobotStudio.
The functionality is activated by the system inputCollision Avoidance. A high signal
will activate the functionality and a low signal will deactivate the functionality. The
functionality is by default active if no signal has been assigned to the system input
Collision Avoidance.
Collision Avoidance is active both during jogging and when running programs.
Also, the RAPID function IsCollFree provides a way to check possible collisions
before moving to a position.

CAUTION

Always be careful to avoid collisions with external equipment, since a collision
could damage the mechanical structure of the arm.
Collision Avoidance is no guarantee for avoiding collisions.

Tip

How to configure Collision Avoidance is described in Operating
manual - RobotStudio.

Tip

Collision Avoidance adds the user configuration in the folderCA under theHOME
folder. This is created when adding a configuration in RobotStudio.
If disk space is needed, the rsgfx files can be removed.

Continues on next page
Application manual - Controller software IRC5 283
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.7 Collision Avoidance

False collision warning
There are different ways to lower the sensitivity of the function Collision Avoidance
to avoid false warnings.

• Temporarily disable Collision Avoidance, see Disabling Collision Avoidance
on page 285.

• For IRB 14000, decrease the safety distance for the arm or geometric model
that triggers the false collision warning, see Decrease sensitivity between
links for IRB 14000 on page 285.

• Decrease the general safety distance with the system parameter Coll-Pred
Safety Distance.

Activation/deactivation of objects
By default, a defined collision object is active all the time. However, it is possible
to configure a collision object with an activation signal, which basically connects
it to a digital input that determines whether the object is active or not. This is useful,
for example, for modelling multiple tools, where only one tool at a time is active.
Another use case is modelling of objects that can be present or absent in the robot
cell, for example a pallet.
Note that changing the state of an activation signal will immediately change the
activation state of the connected collision object, and no synchronization to the
robot path planning is made. Activating a collision object while the robot is moving
towards the object can thus lead to a collision because the planned path may
already have passed by the collision object while it was inactive. If synchronization
is important, then activation signals should either be changed in finepoints when
the robot is standing still or using trigg instructions like TriggL or TriggJ.

Trigger signals
A non-moving collision object can be configured with a trigger signal. The value
of the trigger signal reflects which robots are in contact with the collision object.
More specifically, the value of a trigger signal should be interpreted as a bit pattern,
where bit k is high if robot k is in contact with the collision object. For example, if
the trigger signal has the value 6, which is 110 in binary, it means that ROB_2 and
ROB_3 are in contact with the collision object. Trigger signals can be used to
implement safe workspace sharing between multiple robots.
A trigger signal can be configured with two timing behaviors: immediate or
on-arrival. If configured with immediate behavior, then the trigger signal is changed
as quickly as possible, well before the robot has physically reached the position
where it comes into contact with the collision object. If configured with on-arrival
behavior, then the trigger signal changes state when the robot physically reaches
the position where it comes in contact with the zone.

Limitations

CAUTION

Collision Avoidance shall not be used for safety of personnel.

Continues on next page
284 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.7 Collision Avoidance
Continued

• Collision Avoidance is a function included in the option Collision Detection.
• Paint robots, IRB 6620LX, and delta robots are not supported.
• Collision Avoidance cannot be used in manual mode together with responsive

jogging. The system parameter Jog Mode must be changed to Standard.
• Only stationary/non-moving objects can be configured with a trigger signal.

A trigger signal must correspond to a group signal. Furthermore, each
collision object must have its own trigger signal.

• There is no support for applications that do corrections to the path, such as
conveyor tracking, WeldGuide, Force Control, SoftMove, SoftAct etc.

• The Collision Avoidance functionality between 2 robots (or more) can only
be achieved when using a MultiMove system.

Disabling Collision Avoidance
It is possible to temporarily disable the function Collision Avoidance if the robot
has already collided or is within the default safety distance, or when the robot arms
need to be very close and the risk of collision is acceptable.
Set the system input signal Collision Avoidance to 0 to disable Collision
Avoidance. It is recommended to enable it (set Collision Avoidance to 1) as
soon as the work is done that required Collision Avoidance to be disabled.

Decrease sensitivity between links for IRB 14000
For dual arm robots, the sensitivity can be decreased between individual robot
arm links. This is useful if two links come close to each other, but the general safety
distance should be maintained.
Open the file irb_14000_common_config.xml located in the folder
<SystemName>\PRODUCT\ROBOTWARE_6.XX.XXXX\robots\CA\irb_14000.
For example, to decrease the safety distance between the left arm's link 3 and the
right arm's link 4 to 1 mm, add the following row:

<Pair object1="ROB_L_Link3" object2="ROB_R_Link4"
safetyDistance="0.001"/>

To decrease the safety distance between the left arm's link 5 and the robot base
to 2 mm, add the following row:

<Pair object1="ROB_L_Link5" object2="Base" safetyDistance="0.002"/>

To disable collision avoidance between the left arm's link 2 and the right arm's link
3, add the following row:

<Pair object1="ROB_L_Link2" object2="ROB_R_Link3" exclude="true"/>

Note

The safety distance between two links can be decreased by adding a row to this
XML file, but it cannot be increased to a higher value than defined by the system
parameter Coll-Pred Safety Distance.

Application manual - Controller software IRC5 285
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.1.7 Collision Avoidance

Continued

7.2 SafeMove Assistant

Purpose
SafeMove Assistant is a functionality in RobotWare that helps users to program
their application when there is an active SafeMove configuration. The assistant
will read the active configuration and plan the trajectories according to the limits
and settings in that configuration. It will set the speed so that SafeMove will not
trigger violations etc. It will also stop with error message in case the robot is
programmed to enter a forbidden zone etc.
SafeMove Assistant will automatically adjust robot behavior to adopt to the active
SafeMove configuration, the robot will adopt to speed limited zones and stop before
entering forbidden zones.

CAUTION

SafeMove Assistant is not a safety function.
For example, if using a fence, then a safety distance is required between the
safe cartesian zone and the fence.

Note

In case of SafeMove Assistant fails, the SafeMove supervision will trigger an
emergency stop.

Description
SafeMove Assistant will check if any SafeMove speed limit is active for any
Cartesian speed checkpoint (TCP, tool points, and elbow). If this is the case, a
corresponding speed limit is applied in the path planner. For technical reasons,
only the speed of the TCP, the wrist center point (WCP), and the elbow are limited
by the path planner. Therefore, in cases where other tool points move faster than
the TCP, SafeMove may trigger a Tool Speed violation. To avoid this, change the
program or decrease the value of the parameter SafeMove assistance speed factor
(see below).
SafeMove Assistant is not active in manual mode.
SafeMove Assistant does not take path corrections generated at lower level into
account. It is therefore an increased risk of SafeMove violations when running
applications like Externally Guided Motion or conveyor tracking.

Continues on next page
286 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.2 SafeMove Assistant

System parameters
SafeMove Assistant can be disabled for the SafeMove validation etc. This is done
with the parameter Disable SafeMove Assistance, in the type in Motion System.
There are some parameters that can be changed in case robot system has minor
overshoot or in any other way triggers SafeMove violations.

DescriptionParameter

That has a default setting of 0.96 which corresponds to 96% of speed
supervision will be the speed that path planner will use. This parameter
can be decreased to reduce that risk but can in most cases be left at
default value.

SafeMoveAssist-
ance Speed
Factor

When robot is running on a zone border there is a small risk that Safe-
Move can trigger violations when going in and out of the zone. This
parameter can be increased to reduce that risk but can in most cases
be left at default value.

SafeMove assist-
ance zone mar-
gin

For more information, see the parameters in the type Motion System described in
Technical reference manual - System parameters.

Application manual - Controller software IRC5 287
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

7 Motion Supervision
7.2 SafeMove Assistant

Continued

This page is intentionally left blank

8 Communication
8.1 FTP Client [614-1]

8.1.1 Introduction to FTP Client

Purpose
The purpose of FTP Client is to enable the robot to access remote mounted disks,
for example a hard disk drive on a PC.
Here are some examples of applications:

• Backup to a remote computer.
• Load programs from a remote computer.

Network illustration

en0300000505

Description
Several robots can access the same computer over an Ethernet network.
Once the FTP application protocol is configured, the remote computer can be
accessed in the same way as the controller's internal hard disk.

What is included
The RobotWare option FTP and NFS Client gives you access to the system
parameter typeApplication protocol and its parameters:Name, Type, Transmission
protocol, Server address, Server type, Trusted, Local path, Server path, Username,
Password, and Show Device.

Basic approach
This is the general approach for using FTP Client. For more detailed examples of
how this is done, see Examples on page 292.

1 Configure an Application protocol to point out a disk or directory on a remote
computer that will be accessible from the robot.

Continues on next page
Application manual - Controller software IRC5 289
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.1.1 Introduction to FTP Client

2 Read and write to the remote computer in the same way as with the
controller's internal hard disk.

Requirements
The external computer must have:

• TCP/IP stack
• FTP Server

Directory listing style on FTP server
The FTP server must list directories in a UNIX style.
Example:
drwxrwxrwx 1 owner group 25 May 18 16:39 backups

The MS-DOS style does not work.

Tip

For Internet Information Services (IIS) in Windows, the directory listing style is
configurable.

Welcome Message from FTP server
The welcome message from the FTP server can only consist of one line. For the
FileZilla FTP server, change the custom welcome message to "FileZilla".

Limitations
When using the FTP Client the maximum length for a file name is 99 characters.
When using the FTP Client the maximum length for a file path including the file
name is 200 characters. The whole path is included in the 200 characters, not only
the server path. When ordering a backup towards a mounted disk all the directories
created by the backup has to be included in the max path.

Example

ValueParameter

pc:Local path

C:\robot_1Server path

• A backup is saved to pc:/Backups/Backup_20130109
(27 characters)

• The path on the PC will be C:\robot_1\Backups\Backup_20130109
(34 characters)

• The longest file path inside this backup is
C:\robot_1\Backups\Backup_20130109\RAPID\TASK1\PROGMOD\myprogram.mod
(54+13 characters)

The maximum path length for this example first looks like 27 characters but is
actually 67 characters.

290 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.1.1 Introduction to FTP Client
Continued

8.1.2 System parameters

Application protocol
This is a brief description of the parameters used to configure an application
protocol. For more information, see the respective parameter below.
These parameters belongs to the type Application protocol in the topic
Communication.

DescriptionParameter

Name of the application protocol.Name

Type of application protocol.Type
Set this to "FTP".

Name of the transmission protocol the protocol should use (for ex-
ample "TCPIP1").

Transmission protocol

The IP address of the computer with the FTP server.Server address

The type of FTP server the FTP client is connected to.Server type

This flag decides if this computer should be trusted, i.e. if losing the
connection should make the program stop.

Trusted

Defines what the shared unit will be called on the robot. The para-
meter value must end with a colon (:).

Local path

If, for example the unit is named "pc:", the name of the test.mod on
this unit would be pc:test.mod

The name of the disk or folder to connect to, on the remote com-
puter.

Server path

If not specified, the application protocol will reference the directory
that is shared by the FTP server.
Note: The exported path should not be specified if communicating
with an FTP server of type Distinct FTP, FileZilla or MS IIS.

The user name used by the robot when it logs on to the remote
computer.

Username

The user account must be set up on the FTP server.

The password used by the robot when it logs on to the remote
computer.

Password

Note that the password written here will be visible to all who has
access to the system parameters.

Shall the device be visible on external clients, e.g. on the FlexPend-
ant?

Show Device

Transmission protocol
For network devices, the connection instance is configured by setting the parameter
Type to "TCP/IP" and the parameter Name to, for example, "TCPIP1".

Application manual - Controller software IRC5 291
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.1.2 System parameters

8.1.3 Examples

Example configuration
This is an example of how an application protocol can be configured for FTP.

ValueParameter

my_FTP_protocolName

FTPType

TCPIP1Transmission protocol

100.100.100.100Server address

NotSetServer type

NoTrusted

pc:Local path

C:\robot_1Server path

Robot1Username

robot1Password

Note: The value of Server path should exclude the exported path if communicating
with an FTP server of type Distinct FTP, FileZilla or MS IIS.

Example with FlexPendant
This example shows how to use the FlexPendant to make a backup to the remote
PC. We assume that the configuration is done according to the example
configuration shown above.

1 Tap ABB and select Backup and Restore.
2 Tap on Backup Current System.
3 Save the backup to pc:/Backup/Backup_20031008 (the path on the PC will

be C:\robot_1\Backup\Backup_20031008).

Example with RAPID code
The following examples show how to open the file C:\robot_1\files\file1.txt on the
remote PC from a RAPID program on the controller. We assume that the
configuration is done according to the example configuration shown above.
For the home directory on IRC5:

Open "HOME:" \FILE:="file1.txt", file;

For the directory on the PC (e.g. C: \ ABB which is specified in the server):
Open "pc:" \FILE:="file1.txt", file;

292 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.1.3 Examples

8.2 SFTP Client [614-1]

8.2.1 Introduction to SFTP Client

Purpose
The purpose of SFTP Client is to enable the robot to access remote mounted disks,
for example a hard disk drive on a PC.
Here are some examples of applications:

• Backup to a remote computer.
• Load programs from a remote computer.

Network illustration

en0300000505

Description
Several robots can access the same computer over an Ethernet network.
Once the SFTP application protocol is configured, the remote computer can be
accessed in the same way as the controller's internal hard disk.

What is included
The RobotWare option FTP and NFS Client gives you access to the system
parameter typeApplication protocol and its parameters:Name, Type, Transmission
protocol, Server address, Trusted, Local path, Server path, Username, Password,
Show Device, and FingerPrint.

Basic approach
This is the general approach for using SFTP Client. For more detailed examples
of how this is done, see Examples on page 292.

1 Configure an Application protocol to point out a disk or directory on a remote
computer that will be accessible from the robot.

2 Read and write to the remote computer in the same way as with the
controller's internal hard disk.

Continues on next page
Application manual - Controller software IRC5 293
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.2.1 Introduction to SFTP Client

SFTP supports the following servers:
• Rebex version 1.0.3
• CompleteFTP version 11.0.0
• Cerberus version 9.0.4.0

In certain SFTP servers, as Complete SFTP server, there is a configuration setting,
Timeout for idle sessions, which defines the time that the connection can be idle.
If no client requests are made during this time interval, the connection is closed.
Setting the value as No timeout will keep the connection alive, even though client
requests are not made.

Requirements
The external computer must have:

• TCP/IP stack
• SFTP Server

Limitations
When using the SFTP Client the maximum length for a file name is 99 characters.
When using the SFTP Client the maximum length for a file path including the file
name is 200 characters. The whole path is included in the 200 characters, not only
the server path. When ordering a backup towards a mounted disk all the directories
created by the backup has to be included in the max path.

Example

ValueParameter

pc:Local path

• A backup is saved to pc:/Backups/Backup_20130109
(27 characters)

• The path on the PC will be \Backups\Backup_20130109
(24 characters)

• The longest file path inside this backup is
\Backups\Backup_20130109\RAPID\TASK1\PROGMOD\myprogram.mod
(44+13 characters)

The maximum path length for this example first looks like 27 characters but is
actually 57 characters.

294 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.2.1 Introduction to SFTP Client
Continued

8.2.2 System parameters

Application protocol
This is a brief description of the parameters used to configure an application
protocol. For more information, see the respective parameter below.
These parameters belongs to the type Application protocol in the topic
Communication.

DescriptionParameter

Name of the application protocol.Name

Type of application protocol.Type
Set this to "SFTP".

Name of the transmission protocol the protocol should use (for ex-
ample "TCPIP1").

Transmission protocol

The IP address of the computer with the SFTP server.Server address

This flag decides if this computer should be trusted, i.e. if losing the
connection should make the program stop.

Trusted

Defines what the shared unit will be called on the robot. The para-
meter value must end with a colon (:).

Local path

If, for example the unit is named "pc:", the name of the test.mod on
this unit would be pc:test.mod

The user name used by the robot when it logs on to the remote
computer.

Username

The user account must be set up on the SFTP server.

The password used by the robot when it logs on to the remote
computer.

Password

Note that the password written here will be visible to all who has
access to the system parameters.

Shall the device be visible on external clients, e.g. on the FlexPend-
ant?

Show Device

To guarantee that the controller connects to the expected SFTP
server, and not a malicious server, a server fingerprint can be used.

FingerPrint

Transmission protocol
For network devices, the connection instance is configured by setting the parameter
Type to "TCP/IP" and the parameter Name to, for example, "TCPIP1".

Application manual - Controller software IRC5 295
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.2.2 System parameters

8.2.3 Examples

Example configuration
This is an example of how an application protocol can be configured for SFTP.

ValueParameter

my_SFTP_protocolName

SFTPType

TCPIP1Transmission protocol

100.100.100.100Server address

NoTrusted

pc:Local path

Robot1Username

robot1Password

YesShow Device

A2:3E:41:90:4C:F6:32:BD:0A:7E:FB:57:89:D4:8E:13:20:07:B6:AFFingerPrint

Example with FlexPendant
This example shows how to use the FlexPendant to make a backup to the remote
PC. We assume that the configuration is done according to the example
configuration shown above.

1 Tap ABB and select Backup and Restore.
2 Tap on Backup Current System.
3 Save the backup to pc:/Backup/Backup_20031008.

Example with RAPID code
This example shows how to open the file files\file1.txt on the remote PC from a
RAPID program on the controller.
For the home directory on IRC5:

Open "HOME:" \FILE:="file1.txt", file;

For the directory on the PC (e.g. C: \ ABB which is specified in the server):
Open "pc:" \FILE:="file1.txt", file;

296 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.2.3 Examples

8.3 NFS Client [614-1]

8.3.1 Introduction to NFS Client

Purpose
The purpose of NFS Client is to enable the robot to access remote mounted disks,
for example a hard disk drive on a PC.
Here are some examples of applications:

• Backup to a remote computer.
• Load programs from a remote computer.

Note

The controller has no antivirus software to check the data transferred to/from
the controller via the remote mounted disk. It is up to the customer to secure the
external data storage.

Description
Several robots can access the same computer over an Ethernet network.
The NFS mounted device is accessed by its name, as specified in the Name system
parameter.
Once the NFS application protocol is configured, the remote computer can be
accessed in the same way as the controller's internal hard disk.

What is included
The RobotWare option FTP and NFS Client gives you access to the system
parameter typeApplication protocol and its parameters:Name, Type, Transmission
protocol, Server address, Server type, Trusted, Local path, Server path, User ID,
Group ID, and Show Device.

Basic approach
This is the general approach for using NFS Client. For more detailed examples of
how this is done, see Examples on page 292.

1 Configure an Application protocol to point out a disk or directory on a remote
computer that will be accessible from the robot.

2 Read and write to the remote computer in the same way as with the
controller's internal hard disk.

Prerequisites
The external computer must have:

• TCP/IP stack
• NFS Server

Continues on next page
Application manual - Controller software IRC5 297
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.3.1 Introduction to NFS Client

Limitations
When using the NFS Client the maximum length for a file path including the file
name is 248 characters. The whole path is included in the 248 characters, not only
the server path. When ordering a backup towards a mounted disk all the directories
created by the backup has to be included in the max path.

298 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.3.1 Introduction to NFS Client
Continued

8.3.2 System parameters

Application protocol
This is a brief description of the parameters used to configure an application
protocol. For more information, see the respective parameter below.
These parameters belongs to the type Application protocolin the topic
Communication.

DescriptionParameter

Name of the application protocol.Name

Type of application protocol.Type
Set this to "NFS".

Name of the transmission protocol the protocol should use (for
example "TCPIP1").

Transmission protocol

The IP address of the computer with the NFS server.Server address

The type of FTP server the FTP client is connected to.Server type

This flag decides if this computer should be trusted, i.e. if losing
the connection should make the program stop.

Trusted

Defines what the shared unit will be called on the robot. The
parameter value must end with a colon (:).

Local path

If, for example the unit is named "pc:", the name of the test.mod
on this unit would be pc:test.mod

The name of the exported disk or folder on the remote computer.Server path
For NFS, Server Path must be specified.

Used by the NFS protocol as a way of authorizing the user to ac-
cess a specific server.

User ID

If this parameter is not used, which is usually the case on a PC,
set it to the default value 0.
Note that User ID must be the same for all mountings on one robot
controller.

Used by the NFS protocol as a way of authorizing the user to ac-
cess a specific server.

Group ID

If this parameter is not used, which is usually the case on a PC,
set it to the default value 0.
Note that Group ID must be the same for all mountings on one
robot controller.

Shall the device be visible on external clients, e.g. on the FlexPend-
ant?

Show Device

Transmission protocol
For network devices, the connection instance is configured by setting the parameter
Type to "TCP/IP" and the parameter Name to, for example, "TCPIP1".

Application manual - Controller software IRC5 299
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.3.2 System parameters

8.3.3 Examples

Example configuration
This is an example of how an application protocol can be configured for NFS.

ValueParameter

my_NFS_protocolName

NFSType

TCP/IPTransmission protocol

100.100.100.100Server address

NotSetServer type

NoTrusted

pc:Local path

C:\robot_1Server path

Robot1User ID

robot1Group ID

Example with FlexPendant
This example shows how to use the FlexPendant to make a backup to the remote
PC. We assume that the configuration is done according to the example
configuration shown above.

1 Tap ABB and select Backup and Restore.
2 Tap on Backup Current System.
3 Save the backup to pc:/Backup/Backup_20031008 (the path on the PC will

be C:\robot_1\Backup\Backup_20031008).

Example with RAPID code
This example shows how to open the file C:\robot_1\files\file1.txt on the remote
PC from a RAPID program on the controller. We assume that the configuration is
done according to the example configuration shown above.
For the home directory on IRC5:

Open "HOME:" \FILE:="file1.txt", file;

For the directory on the PC (e.g. C: \ ABB which is specified in the server):
Open "pc:" \FILE:="file1.txt", file;

300 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.3.3 Examples

8.4 PC Interface [616-1]

8.4.1 Introduction to PC Interface

Purpose
PC Interface is used for communication between the controller and a PC.
The option PC Interface is required when connecting to a controller over LAN with
RobotStudio.
With PC Interface, data can be sent to and from a PC. This is, for example, used
for:

• Backup.
• Production statistics logging.
• Operator information presented on a PC.
• Send command to the robot from a PC operator interface.
• RobotStudio add-in that performs operations on the controller.

Note

If connecting over the service port, then the option PC Interface is not required
for RobotStudio and ABB software.

What is included
The RobotWare option PC Interface gives you access to:

• An Ethernet communication interface, which is used by some ABB software
products.

Basic approach
The general approach for using PC Interface is the same as setting up a PC SDK
client application on a PC. For more information, see http://developercenter.robot-
studio.com.

Application manual - Controller software IRC5 301
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.4.1 Introduction to PC Interface

http://developercenter.robotstudio.com
http://developercenter.robotstudio.com

8.4.2 Send variable from RAPID

SCWrite instruction
The instruction SCWrite (Superior ComputerWrite) can be used to send persistent
variables to a client application on a PC. For more information, see Technical
reference manual - RAPID Instructions, Functions and Data types.
The PC must have a client application that can subscribe to the information that
is sent to or from the controller.

Code example
In this example the robot moves objects to a position where they can be treated
by a process that is controlled by the PC. When the object is ready the robot moves
it to its next station.
The program uses SCWrite to inform the PC when the object is in position and
when it has been moved to the next station. It also sends a message to the PC
about how many objects that have been handled.

RAPID module for the sender
VAR rmqslot destination_slot;

VAR user_def

RMQFindSlot destination_slot,"RMQ_Task2";

WHILE TRUE DO

! Wait for next object

WaitDI di1,1;

! Call first routine

move_obj_to_pos();

! Send message to PC that object is in position

user_def = 0;

in_position:=TRUE;

RMQSendMessage destination_slot, in_position \UserDef:=user_def;

! Wait for object to be ready

WaitDI di2,1;

! Call second routine

move_obj_to_next();

! Send message to PC that object is gone

in_position:=FALSE;

RMQSendMessage destination_slot, in_position \UserDef:=user_def;

! Inform PC how many object has been handled

nbr_objects:= nbr_objects+1;

user_def = 1;

Continues on next page
302 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.4.2 Send variable from RAPID

RMQSendMessage destination_slot, nbr_objects \UserDef:=user_def;

ENDWHILE

PC SDK for the receiver
public void ReceiveObjectPosition()

{

const string destination_slot = "RMQ_Task2";

IpcQueue queue = Controller.Ipc.CreateQueue(destination_slot,
16, Ipc.MaxMessageSize);

// Until application is closed

while (uiclose)

{

IpcMessage message = new IpcMessage();

IpcReturnType retValue = IpcReturnType.Timeout;

retValue = queue.Receive(1000, message);

if (IpcReturnType.OK == retValue)

{

string receivemessage = message.Data.ToString().ToLower();

// if message.UserDef is 0 means Object position data else
number of objects

if (message.UserDef == 0)

{

if (receivemessage == "true")

{

// Object is in position

}

else

{

// Object is not in position

}

}

else

{

// number of objects in receivemessage

}

}

}

Application manual - Controller software IRC5 303
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.4.2 Send variable from RAPID

Continued

8.4.3 ABB software using PC Interface

Overview
PC Interface provides a communication interface between the controller and a PC
connected to an Ethernet network.
This functionality can be used by different software applications from ABB. Note
that the products mentioned below are examples of applications using PC Interface,
not a complete list.

RobotStudio
RobotStudio is a software product delivered with the robot. Some of the functionality
requires PC Interface when connecting over the WAN port.
The following table shows some examples of RobotStudio functionality that is only
available if you have PC Interface:

DescriptionFunctionality

Error messages and similar events can be shown or logged on the PC.Event recorder

Allows on-line editing against the controller from the PC.RAPID editor

For more information, see Operating manual - RobotStudio.

304 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.4.3 ABB software using PC Interface

8.5 Socket Messaging [616-1]

8.5.1 Introduction to Socket Messaging

Purpose
The purpose of Socket Messaging is to allow a RAPID programmer to transmit
application data between computers, using the TCP/IP network protocol. A socket
represents a general communication channel, independent of the network protocol
being used.
Socket communication is a standard that has its origin in Berkeley Software
Distribution Unix. Besides Unix, it is supported by, for example, Microsoft Windows.
With Socket Messaging, a RAPID program on a robot controller can, for example,
communicate with a C/C++ program on another computer.

What is included
The RobotWare functionality Socket Messaging gives you access to RAPID data
types, instructions and functions for socket communication between computers.

Basic approach
This is the general approach for using Socket Messaging. For a more detailed
example of how this is done, seeCode examples for SocketMessaging on page310.

1 Create a socket, both on client and server. A robot controller can be either
client or server.

2 Use SocketBind and SocketListen on the server, to prepare it for a
connection request.

3 Order the server to accept incoming socket connection requests.
4 Request socket connection from the client.
5 Send and receive data between client and server.

Application manual - Controller software IRC5 305
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.5.1 Introduction to Socket Messaging

8.5.2 Schematic picture of socket communication

Illustration of socket communication

en0600003224

Tip

Do not create and close sockets more than necessary. Keep the socket open
until the communication is completed. The socket is not really closed until a
certain time after SocketClose (due to TCP/IP functionality).

306 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.5.2 Schematic picture of socket communication

8.5.3 Technical facts about Socket Messaging

Overview
When using the functionality Socket Messaging to communicate with a client or
server that is not a RAPID task, the following information can be useful.

No string termination
When sending a data message, no string termination sign is sent in the message.
The number of bytes sent is equal to the return value of the function strlen(str)
in the programming language C.

Unintended merge of messages
If sending two messages with no delay between them, the result can be that the
second message is appended to the first. The result is one big message instead
of two messages. To avoid this, use acknowledge messages from the receiver of
the data, if the client/server is just receiving messages.

Non printable characters
If a client that is not a RAPID task needs to receive non printable characters (binary
data) in a string from a RAPID task, this can be done by RAPID as shown in the
example below.

SocketSend socket1 \Str:="\0D\0A";

For more information, see Technical reference manual - RAPID kernel, section
String literals.

Application manual - Controller software IRC5 307
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.5.3 Technical facts about Socket Messaging

8.5.4 RAPID components

Data types
This is a brief description of each data type in Socket Messaging. For more
information, see Technical reference manual - RAPID Instructions, Functions and
Data types.

DescriptionData type

A socket device used to communicate with other computers on a net-
work.

socketdev

Can contain status information from a socketdev variable.socketstatus

Instructions for client
This is a brief description of each instruction used by the a Socket Messaging
client. For more information, see Technical referencemanual - RAPID Instructions,
Functions and Data types.

DescriptionInstruction

Creates a new socket and assigns it to a socketdev variable.SocketCreate

Makes a connection request to a remote computer. Used by the client
to connect to the server.

SocketConnect

Sends data via a socket connection to a remote computer. The data
can be a string or rawbytes variable, or a byte array.

SocketSend

Receives data and stores it in a string or rawbytes variable, or in
a byte array.

SocketReceive

Closes a socket and release all resources.SocketClose

Tip

Do not use SocketClose directly after SocketSend. Wait for acknowledgement
before closing the socket.

Instructions for server
A Socket Messaging server uses the same instructions as the client, except for
SocketConnect. In addition, the server use the following instructions:

DescriptionInstruction

Binds the socket to a specified port number on the server.
Used by the server to define on which port (on the server) to
listen for a connection.

SocketBind

The IP address defines a physical computer and the port
defines a logical channel to a program on that computer.

Makes the computer act as a server and accept incoming
connections. It will listen for a connection on the port specified
by SocketBind.

SocketListen

Accepts an incoming connection request. Used by the server
to accept the client’s request.

SocketAccept

Continues on next page
308 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.5.4 RAPID components

Note

The server application must be started before the client application, so that the
instruction SocketAccept is executed before any client execute
SocketConnect.

Functions
This is a brief description of each function in Socket Messaging. For more
information, see Technical reference manual - RAPID Instructions, Functions and
Data types.

DescriptionFunction

Returns information about the last instruction performed on the socket
(created, connected, bound, listening, closed).

SocketGetStatus

SocketGetStatus does not detect changes from outside RAPID (such
as a broken connection).

Application manual - Controller software IRC5 309
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.5.4 RAPID components

Continued

8.5.5 Code examples for Socket Messaging

Example of client/server communication
This example shows program code for a client and a server, communicating with
each other.
The server will write on the FlexPendant:

Client wrote - Hello server

Client wrote - Shutdown connection

The client will write on its FlexPendant:
Server wrote - Message acknowledged

Server wrote - Shutdown acknowledged

In this example, both the client and the server use RAPID programs. In reality, one
of the programs would often be running on a PC (or similar computer) and be
written in another program language.
Code example for client, contacting server with IP address 192.168.0.2:

! WaitTime to delay start of client.

! Server application should start first.

WaitTime 5;

VAR socketdev socket1;

VAR string received_string;

PROC main()

SocketCreate socket1;

SocketConnect socket1, "192.168.0.2", 1025;

! Communication

SocketSend socket1 \Str:="Hello server";

SocketReceive socket1 \Str:=received_string;

TPWrite "Server wrote - " + received_string;

received_string := "";

! Continue sending and receiving

...

! Shutdown the connection

SocketSend socket1 \Str:="Shutdown connection";

SocketReceive socket1 \Str:=received_string;

TPWrite "Server wrote - " + received_string;

SocketClose socket1;

ENDPROC

Code example for server (with IP address 192.168.0.2):
VAR socketdev temp_socket;

VAR socketdev client_socket;

VAR string received_string;

VAR bool keep_listening := TRUE;

PROC main()

SocketCreate temp_socket;

SocketBind temp_socket, "192.168.0.2", 1025;

SocketListen temp_socket;

WHILE keep_listening DO

! Waiting for a connection request

SocketAccept temp_socket, client_socket;

Continues on next page
310 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.5.5 Code examples for Socket Messaging

! Communication

SocketReceive client_socket \Str:=received_string;

TPWrite "Client wrote - " + received_string;

received_string := "";

SocketSend client_socket \Str:="Message acknowledged";

! Shutdown the connection

SocketReceive client_socket \Str:=received_string;

TPWrite "Client wrote - " + received_string;

SocketSend client_socket \Str:="Shutdown acknowledged";

SocketClose client_socket;

ENDWHILE

SocketClose temp_socket;

ENDPROC

Example of error handler
The following error handlers will take care of power failure or broken connection.
Error handler for client in previous example:

! Error handler to make it possible to handle power fail

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

SocketClose socket1;

! WaitTime to delay start of client.

! Server application should start first.

WaitTime 10;

SocketCreate socket1;

SocketConnect socket1, "192.168.0.2", 1025;

RETRY;

ELSE

TPWrite "ERRNO = "\Num:=ERRNO;

Stop;

ENDIF

Error handler for server in previous example:
! Error handler for power fail and connection lost

ERROR

IF ERRNO=ERR_SOCK_TIMEOUT THEN

RETRY;

ELSEIF ERRNO=ERR_SOCK_CLOSED THEN

SocketClose temp_socket;

SocketClose client_socket;

SocketCreate temp_socket;

SocketBind temp_socket, "192.168.0.2", 1025;

SocketListen temp_socket;

SocketAccept temp_socket, client_socket;

RETRY;

ELSE

TPWrite "ERRNO = "\Num:=ERRNO;

Stop;

ENDIF

Application manual - Controller software IRC5 311
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.5.5 Code examples for Socket Messaging

Continued

8.6 RAPID Message Queue [included in 616-1, 623-1]

8.6.1 Introduction to RAPID Message Queue

Purpose
The purpose of RAPID Message Queue is to communicate with another RAPID
task or PC application using PC SDK.
Here are some examples of applications:

• Sending data between two RAPID tasks.
• Sending data between a RAPID task and a PC application.

RAPID Message Queue can be defined for interrupt or synchronous mode. Default
setting is interrupt mode.

What is included
The RAPID Message Queue functionality is included in the RobotWare options:

• PC Interface
• Multitasking

RAPID Message Queue gives you access to RAPID instructions, functions, and
data types for sending and receiving data.

Basic approach
This is the general approach for using RAPID Message Queue. For a more detailed
example of how this is done, see Code examples on page 319.

1 For interrupt mode: The receiver sets up a trap routine that reads a message
and connects an interrupt so the trap routine is called when a new message
appears.
For synchronous mode: The message is handled by a waiting or the next
executed RMQReadWait instruction.

2 The sender looks up the slot identity of the queue in the receiver task.
3 The sender sends the message.

312 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.1 Introduction to RAPID Message Queue

8.6.2 RAPID Message Queue behavior

Illustration of communication
The picture below shows various possible senders, receivers, and queues in the
system. Each arrow is an example of a way to post a message to a queue.

PC
PC SDK

Queue

Robot
controller

Queue

Queue

RAPID
task

RAPID
task

en0700000430

Creating a PC SDK client
This manual only describes how to use RAPID Message Queue to make a RAPID
task communicate with other RAPID tasks and PC SDK clients. For information
about how to set up the communication on a PC SDK client, see http://developer-
center.robotstudio.com.

What can be sent in a message
The data in a message can be any data type in RAPID, except:

• non-value
• semi-value

Continues on next page
Application manual - Controller software IRC5 313
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.2 RAPID Message Queue behavior

http://developercenter.robotstudio.com
http://developercenter.robotstudio.com

• motsetdata

The data in a message can also be an array of a data type.
User defined records are allowed, but both sender and receiver must have identical
declarations of the record.

Tip

To keep backward compatibility, do not change a user defined record once it is
used in a released product. It is better to create a new record. This way, it is
possible to receive messages from both old and new applications.

Queue name
The name of the queue configured for a RAPID task is the same as the name of
the task with the prefix RMQ_, for example RMQ_T_ROB1. This name is used by
the instruction RMQFindSlot.

Queue handling
Messages in queues are handled in the order that they are received. This is known
as FIFO, first in first out. If a message is received while a previous message is
being handled, the new message is placed in the queue. As soon as the first
message handling is completed, the next message in the queue is handled.

Queue modes
The queue mode is defined with the system parameterRMQMode. Default behavior
is interrupt mode.

Interrupt mode
In interrupt mode the messages are handled depending on data type. Messages
are only handled for connected data types.
A cyclic interrupt must be set up for each data type that the receiver should handle.
The same trap routine can be called from more than one interrupt, that is for more
than one data type.
Messages of a data type with no connected interrupt will be discarded with only a
warning message in the event log.
Receiving an answer to the instruction RMQSendWait does not result in an interrupt.
No interrupt needs to be set up to receive this answer.

Synchronous mode
In synchronous mode, the task executes an RMQReadWait instruction to receive
a message of any data type. All messages are queued and handled in order they
arrive.
If there is a waiting RMQReadWait instruction, the message is handled immediately.
If there is no waiting RMQReadWait instruction, the next executed RMQReadWait

instruction will handle the message.

Continues on next page
314 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.2 RAPID Message Queue behavior
Continued

Message content
A RAPID Message Queue message consists of a header, containing receiver
identity, and a RAPID message. The RAPID message is a pretty-printed string with
data type name (and array dimensions) followed by the actual data value.
RAPID message examples:

"robtarget;[[930,0,1455],[1,0,0,0],[0,0,0,0],
[9E9,9E9,9E9,9E9,9E9,9E9]]"

"string;"A message string""

"stringarr:["string1","string2"]

"msgrec;[100,200]"

"bool{2,2};[[TRUE,TRUE],[FALSE,FALSE]]"

RAPID task not executing
It is possible to post messages to a RAPID task queue even though the RAPID
task containing the queue is not currently executing. The interrupt will not be
executed until the RAPID task is executing again.

Message size limitations
Before a message is sent, the maximum size (for the specific data type and
dimension) is calculated. If the size is greater than 5000 bytes, the message will
be discarded and an error will be raised. The sender can get same error if the
receiver is a PC SDK client with a maximum message size smaller than 400 bytes.
Sending a message of a specific data type with specific dimensions will either
always be possible or never possible.
When a message is received (when calling the instruction RMQGetMsgData), the
maximum size (for the specific data type and dimension) is calculated. If the size
is greater than the maximum message size configured for the queue of this task,
the message will be discarded and an error will be logged. Receiving a message
of a specific data type with specific dimensions will either always be possible or
never possible.

Message lost
In interrupt mode, any messages that cannot be received by a RAPID task will be
discarded. The message will be lost and a warning will be placed in the event log.
Example of reasons for discarding a message:

• The data type that is sent is not supported by the receiving task.
• The receiving task has not set up an interrupt for the data type that is sent,

and no RMQSendWait instruction is waiting for this data type.
• The interrupt queue of the receiving task is full

Queue lost
The queue is cleared at power fail.
When the execution context in a RAPID task is lost, for example when the program
pointer is moved to main, the corresponding queue is emptied.

Continues on next page
Application manual - Controller software IRC5 315
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.2 RAPID Message Queue behavior

Continued

Related information
For more information on queues and messages, see Technical reference
manual - RAPID kernel.

316 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.2 RAPID Message Queue behavior
Continued

8.6.3 System parameters

About the system parameters
This is a brief description of each parameter in the functionality RAPID Message
Queue. For more information, see the respective parameter in Technical reference
manual - System parameters.

Type Task
These parameters belong to the type Task in the topic Controller.

DescriptionParameter

Can have one of the following values:
• None - Disable all communication with RAPID Message

Queue for this RAPID task.
• Internal - Enable the receiving of RAPID Message

Queue messages from other tasks on the controller,
but not from external clients (FlexPendant and PC ap-
plications). The task is still able to send messages to
external clients.

• Remote - Enable communication with RAPID Message
Queue for this task, both with other tasks on the con-
troller and external clients (FlexPendant and PC applic-
ations).

The default value is None.

RMQ Type

Defines the mode of the queue.RMQ Mode
Can have one of the following values:

• Interrupt - A message can only be received by connect-
ing a trap routine to a specified message type.

• Synchronous - A message can only be received by
executing an RMQReadWait instruction.

Default value is Interrupt.

The maximum data size, in bytes, for a RAPID Message
Queue message.

RMQ Max Message Size

An integer between 400 and 5000. The default value is 448.

Note

The value cannot be changed in RobotStudio or on the Flex-
Pendant. The only way to change the value is to edit the
sys.cfg file by adding the attribute RmqMaxMsgSize with the
desired value.

The maximum number of RAPID Message Queue messages
in the queue to this task.

RMQ Max No Of Messages

An integer between 1 and 10. The default value is 5.

Note

The value cannot be changed in RobotStudio or on the Flex-
Pendant. The only way to change the value is to edit the
sys.cfg file by adding the attribute RmqMaxNoOfMsgwith the
desired value.

Application manual - Controller software IRC5 317
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.3 System parameters

8.6.4 RAPID components

About the RAPID components
This is a brief description of each instruction, function, and data type in RAPID
Message Queue. For more information, see the respective parameter in Technical
reference manual - RAPID Instructions, Functions and Data types.

Instructions

DescriptionInstruction

Find the slot identity number of the queue configured for a
RAPID task or Robot Application Builder client.

RMQFindSlot

Send data to the queue configured for a RAPID task or Robot
Application Builder client.

RMQSendMessage

Order and enable cyclic interrupts for a specific data type.IRMQMessage

Get the first message from the queue of this task. Can only
be used if RMQ Mode is defined as Interrupt.

RMQGetMessage

Get the header part from a message.RMQGetMsgHeader

Get the data part from a message.RMQGetMsgData

Send a message and wait for the answer. Can only be used
if RMQ Mode is defined as Interrupt.

RMQSendWait

Wait for a message. Can only be used if RMQMode is defined
as Synchronous.

RMQReadWait

Empty the queue.RMQEmptyQueue

Functions

DescriptionFunction

Get the name of the queue configured for a RAPID task or
Robot Application Builder client, given a slot identity number,
i.e. given a rmqslot.

RMQGetSlotName

Data types

DescriptionData type

Slot identity of a RAPID task or Robot Application Builder
client.

rmqslot

A message used to store data in when communicating with
RAPID Message Queue. It contains information about what
type of data is sent, the slot identity of the sender, and the
actual data.

rmqmessage

Note: rmqmessage is a large data type. Declaring too many
variables of this data type can lead to memory problems.
Reuse the same rmqmessage variables as much as possible.

The rmqheader describes the message and can be read by
the RAPID program.

rmqheader

318 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.4 RAPID components

8.6.5 Code examples

Example using RMQSendMessage and RMQGetMessage with PC SDK
This is an example using RMQSendMessage and RMQGetMessage with PC SDK.
The PC SDK, creates data (a string) with a request to receive current position of
the mechanical unit. The T_ROB1 task receives the request and creates data
containing the position and sends it back to the PC SDK.

Example of RAPID with RMQ
MODULE MainModule

RECORD position

num x;

num y;

num z;

ENDRECORD

RECORD message

string msg1;

string msg2;

ENDRECORD

VAR position posData;

VAR message request;

VAR intnum rmqMsg;

VAR rmqslot clientSlot;

VAR pos currPosition;

CONST string unknownRequest := "Unknown request";

PROC main()

RMQFindSlot clientSlot, "RMQ_PC_SDK";

CONNECT rmqMsg WITH rmqMessageHandler;

IRMQMessage request, rmqMsg;

WHILE TRUE DO

...

currPosition := CPos(\Tool:=tool0 \WObj:=wobj0);

...

ENDWHILE

IDelete rmqMsg;

EXIT;

ENDPROC

TRAP rmqMessageHandler

VAR rmqmessage rmqMsg;

VAR rmqheader header;

RMQGetMessage rmqMsg;

RMQGetMsgHeader rmqMsg\Header := header\SenderId := clientSlot;

IF header.datatype = "message" THEN

RMQGetMsgData rmqMsg, request;

IF request.msg1 = "Get current position" THEN

posData.x := currPosition.x;

posData.y := currPosition.y;

posData.z := currPosition.z;

RMQSendMessage clientSlot, posData;

Continues on next page
Application manual - Controller software IRC5 319
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.5 Code examples

ELSE

RMQSendMessage clientSlot, unknownRequest;

ENDIF

ENDIF

ENDTRAP

ENDMODULE

Example of PC SDK with RMQ
class Messaging

{

private static Controller ctrl;

private static IpcQueue pcsdkQueue;

private static IpcQueue trob1Queue;

private static float X;

private static float Y;

private static float Z;

private static string message1 = "\"Get current position\"";

private static string message2 = "\"\"";

static void Main(string[] args)

{

...

//Connect and login to selected controller.

...

if (ctrl != null)

{

trob1Queue = ctrl.Ipc.GetQueue("RMQ_T_ROB1");

string pcsdkQueueName = "RMQ_PC_SDK";

if (ctrl.Ipc.Exists(pcsdkQueueName))

{

ctrl.Ipc.DeleteQueue(ctrl.Ipc.GetQueueId(pcsdkQueueName));

}

pcsdkQueue = ctrl.Ipc.CreateQueue(pcsdkQueueName, 16,
ctrl.Ipc.GetMaximumMessageSize());

SendMessage(message1, message2);

...

ctrl.Ipc.DeleteQueue(ctrl.Ipc.GetQueueId(pcsdkQueueName));

ctrl.Logoff();

...

}

}

public static void SendMessage(string message1, string message2)

Continues on next page
320 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.5 Code examples
Continued

{

IpcMessage message = new IpcMessage();

byte[] data;

if (pcsdkQueue != null && trob1Queue != null)

{

data = new UTF8Encoding().GetBytes("message;[" + message1 +
" , " + message2 + "]");

message.SetData(data);

message.Sender = pcsdkQueue.QueueId;

trob1Queue.Send(message);

System.Threading.Tasks.Task.Run(() => { receiveMessage();
});

}

}

private static void receiveMessage()

{

IpcMessage message = new IpcMessage();

IpcReturnType ret;

int timeout = 5000;

if (pcsdkQueue != null)

{

ret = pcsdkQueue.Receive(timeout, message);

if (ret == IpcReturnType.OK)

{

string answer = new
UTF8Encoding().GetString(message.Data);

string[] answerStructure = answer.Split(';');

if (answerStructure[0] == "position")

{

string pos = answer.Substring((answer.IndexOf('[')) +
1, answer.IndexOf(']') - ((answer.IndexOf('['))
+ 1));

string [] array=pos.Split(',');

X = float.Parse(array[0]);

Y = float.Parse(array[1]);

Z = float.Parse(array[2]);

...

}

else if(answerStructure[0] == "string")

{

string valueCharacter = "\"";

int valueStartIndex = answer.IndexOf(valueCharacter);

int valueEndIndex = answer.IndexOf(valueCharacter,
valueStartIndex + 1);

string returnText = answer.Substring(valueStartIndex
+ 1, valueEndIndex - (valueStartIndex + 1));

...

}

}

Continues on next page
Application manual - Controller software IRC5 321
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.5 Code examples

Continued

else

{

//No message recieved within time limit.

...

}

}

else

{

//No queue found

...

}

}

}

}

322 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

8 Communication
8.6.5 Code examples
Continued

9 Engineering tools
9.1 Multitasking [623-1]

9.1.1 Introduction to Multitasking

Purpose
The purpose of the option Multitasking is to be able to execute more than one
program at a time.
Examples of applications to run in parallel with the main program:

• Continuous supervision of signals, even if the main program has stopped.
This can in some cases take over the job of a PLC. However, the response
time will not match that of a PLC.

• Operator input from the FlexPendant while the robot is working.
• Control and activation/deactivation of external equipment.

Basic description
Up to 20 tasks can be run at the same time. This includes tasks from add-ins and
options, that might be running in the background.
Each task consists of one program (with several program modules) and several
system modules. The modules are local in the respective task.

en0300000517

Variables and constants are local in the respective task, but persistents are not.
Every task has its own trap handling and event routines are triggered only on its
own task system states.

What is included
The RobotWare option Multitasking gives you access to:

• The possibility to run up to 20 programs in parallel (one per task).
• The system parameters: The type Task and all its parameters.

Continues on next page
Application manual - Controller software IRC5 323
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.1 Introduction to Multitasking

• The data types: taskid, syncident, and tasks.
• The instruction: WaitSyncTask.
• The functions: TestAndSet, TaskRunMec, and TaskRunRob.

Note

TestAndSet, TaskRunMec, and TaskRunRob can be used without the option
Multitasking, but they are much more useful together with Multitasking.

Basic approach
This is the basic approach for setting up Multitasking. For more information, see
Debug strategies for setting up tasks on page 328, and RAPID components on
page 327.

1 Define the tasks you need.
2 Write RAPID code for each task.
3 Specify which modules to load in each task.

324 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.1 Introduction to Multitasking
Continued

9.1.2 System parameters

About the system parameters
This is a brief description of each parameter in the option Multitasking. For more
information, see the respective parameter in Technical reference manual - System
parameters.

Task
These parameters belongs to the type Task in the topic Controller.

DescriptionParameter

The name of the task.Task
Note that the name of the task must be unique. This means that it cannot
have the same name as the mechanical unit, and no variable in the
RAPID program can have the same name.
Note that editing the task entry in the configuration editor and changing
the task name will remove the old task and add a new one. This means
that any program or module in the task will disappear after a restart with
these kind of changes.

Used to set priorities between tasks.Task in fore-
ground Task in foreground contains the name of the task that should run in the

foreground of this task. This means that the program of the task, for which
the parameter is set, will only execute if the foreground task program is
idle.
If Task in foreground is set to empty string for a task, it runs at the highest
level.

Controls the start/stop and system restart behavior:
• Normal (NORMAL) - The task program is manually started and

stopped (e.g. from the FlexPendant). The task stops at emergency
stop.

• Static (STATIC) - At a restart the task program continues from
where the it was. The task program is normally not stopped by the
FlexPendant or by emergency stop.

• Semistatic (SEMISTATIC) - The task program restarts from the
beginning at restart. The task program is normally not stopped by
the FlexPendant or by emergency stop.

A task that controls a mechanical unit must be of the type normal.

Type

The name of the start routine for the task program.Main entry

This parameter should be set to NO if the system is to accept unsolved
references in the program while linking a module, otherwise set to YES.

Check unre-
solved refer-
ences

TrustLevel defines the system behavior when a static or semistatic task
program is stopped (e.g. due to error):

• SysFail - If the program of this task stops, the system will be set
to SYS_FAIL. This will cause the programs of all NORMAL tasks
to stop (static and semistatic tasks will continue execution if pos-
sible). No jogging or program start can be made. A restart is re-
quired.

• SysHalt -If the program of this task stops, the programs of all
normal tasks will be stopped. If "motors on" is set, jogging is
possible, but not program start. A restart is required.

• SysStop - If the program of this task stops, the programs of all
normal tasks will be stopped but are restartable. Jogging is also
possible.

• NoSafety - Only the program of this task will stop.

TrustLevel

Continues on next page
Application manual - Controller software IRC5 325
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.2 System parameters

DescriptionParameter

Indicates whether the task program can control robot movement with
RAPID move instructions.

MotionTask

Only one task can have MotionTask set to YES unless the option Mul-
tiMove is used.

326 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.2 System parameters
Continued

9.1.3 RAPID components

Data types
This is a brief description of each data type in Multitasking. For more information,
see the respective data type in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionData type

taskid identify available tasks in the system.taskid
This identity is defined by the system parameter Task, and cannot be
defined in the RAPID program. However, the data type taskid can be
used as a parameter when declaring a routine.
For code example, see taskid on page 345.

syncident is used to identify the waiting point in the program, when
using the instruction WaitSyncTask.

syncident

The name of the syncident variable must be the same in all task pro-
grams.
For code example, see WaitSyncTask example on page 339.

A variable of the data type tasks contains names of the tasks that will
be synchronized by the instruction WaitSyncTask.

tasks

For code example, see WaitSyncTask example on page 339.

Instructions
This is a brief description of each instruction in Multitasking. For more information,
see the respective instruction in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionInstruction

WaitSyncTask is used to synchronize several task programs at a special
point in the program.

WaitSyncTask

A WaitSyncTask instruction will delay program execution and wait for
the other task programs. When all task programs have reached the point,
the respective program will continue its execution.
For code example, seeWaitSyncTask example on page 339.

Functions
This is a brief description of each function in Multitasking. For more information,
see the respective function in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionFunction

TestAndSet is used, together with a boolean flag, to ensure that only one
task program at the time use a specific RAPID code area or system re-
source.

TestAndSet

For code example, seeExample with flag and TestAndSet on page 343.

Check if the task program controls any mechanical unit (robot or other
unit).

TaskRunMec

For code example, seeTest if task controls mechanical unit on page 344.

Check if the task program controls any robot with TCP.TaskRunRob
For code example, seeTest if task controls mechanical unit on page 344.

Application manual - Controller software IRC5 327
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.3 RAPID components

9.1.4 Task configuration

9.1.4.1 Debug strategies for setting up tasks

Tip

The instructions below show the safe way to make updates. By setting the
parameter Type to NORMAL and TrustLevel to NoSafety the task program will
be easier to test and any error that may occur will be easier to correct.
If you are certain that the code you introduce is correct, you can skip changing
values for Type and TrustLevel. If you do not change any system parameters
you may not have to do any restart mode.

Setting up tasks
Follow this instruction when adding a new task to your system.

1 Define the new task by adding an instance of the system parameter type
Task, in the topic Controller.

2 Set the parameter Type to NORMAL.
This will make it easier to create and test the modules in the task.

3 Create the modules that should be in the task, either from the FlexPendant
or offline, and save them.

4 In the system parameters for topic Controller and type Automatic loading of
Modules, specify all modules that should be preloaded to the new task.
For NORMAL tasks the modules can be loaded later, but STATIC or
SEMISTATIC tasks the modules must be preloaded.

5 Stop the controller.
6 In Motors on state, test and debug the modules until the functionality is

satisfactory.
7 Change the parameters Type and TrustLevel to desired values (e.g.

SEMISTATIC and SysFail).
8 Restart the system.

Make changes to task program
Follow this instruction when editing a program in an existing task with Type set to
STATIC or SEMISTATIC.

Action

Change the system parameter TrustLevel to NoSafety.1
This will make it possible to change and test the modules in the task.

If the system parameter needed to be changed, restart the controller.2

On the FlexPendant, start theControl Panel from the ABB menu. Then tap FlexPendant
and Task Panel Settings. Select All tasks and tap OK.

3

In the Quickset menu, select which tasks to start and stop manually. See Select which
tasks to start with START button on page 333.

4

Continues on next page
328 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.4.1 Debug strategies for setting up tasks

Action

Press the STOP button to stop the selected STATIC and SEMISTATIC tasks.5

Start the Program Editor.6
The STATIC and SEMISTATIC tasks are now also editable.

Change, test, and save the modules.7

Start the Control Panel again and open the Task Panel Settings. Select Only Normal
tasks and tap OK.

8

Change the parameter TrustLevel back to desired value (e.g. SysFail).9

Restart the system.10

Application manual - Controller software IRC5 329
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.4.1 Debug strategies for setting up tasks

Continued

9.1.4.2 Priorities

How priorities work
The default behavior is that all task programs run at the same priority, in a Round
Robin way.
It is possible to change the priority of one task by setting it in the background of
another task. Then the program of the background task will only execute when the
foreground task program is idle, waiting for an event, for example. Another situation
when the background task program will execute is when the foreground task
program has executed a move instruction, as the foreground task will then have
to wait until the robot has moved .
To set a task in the background of another task, use the parameter Task in
foreground.

Example of priorities
6 tasks are used, with Task in foreground set as shown in the table below.

Task in foregroundTask name

MAIN

MAINBACK1

BACK1BACK2

BACK1BACK3

SUP1

SUP1SUP2

The priority structure will then look like this:

en0300000451

The programs of the tasks MAIN and SUP1 will take turns in executing an instruction
each (Case 1 in figure below).
If the MAIN task program is idle, the programs of BACK1 and SUP1 will take turns
in executing an instruction each (Case 2 in figure below).

Continues on next page
330 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.4.2 Priorities

If both MAIN and BACK1 task programs are idle, the programs of BACK2, BACK3,
and SUP1 will take turns in executing an instruction each (Case 3 in figure below).

en0300000479

Application manual - Controller software IRC5 331
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.4.2 Priorities

Continued

9.1.4.3 Task Panel Settings

Purpose of Task Panel Settings
The default behavior is that only NORMAL tasks are started and stopped with the
START and STOP buttons. In the Task Selection Panel you can select which
NORMAL tasks to start and stop, see Select which tasks to start with START button
on page 333.
In the Task Panel Settings the default behavior can be altered so that STATIC and
SEMISTATIC tasks also can be stepped, started and stopped with the START and
STOP buttons. However, these tasks can only be started and stopped if they have
TrustLevel set to NoSafety and they can only be started and stopped in manual
mode.

Allow selection of STATIC and SEMISTATIC tasks in tasks panel
The following procedure details how to make STATIC and SEMISTATIC tasks
selectable in the tasks panel.

Action

On theABBmenu, tapControl Panel, then FlexPendant and then Task Panel Settings.1

Select All tasks (Normal/Static/Semistatic) with trustlevel nosafety and tap OK.2

332 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.4.3 Task Panel Settings

9.1.4.4 Select which tasks to start with START button

Background
The default behavior is that the programs of all NORMAL tasks are started
simultaneously when pressing the START button. However, not all NORMAL task
programs need to run at the same time. It is possible to select which of the NORMAL
task programs will start when pressing the START button.
If All Tasks is selected in the Task Panel Settings, the programs of all STATIC
and SEMISTATIC tasks with TrustLevel set to NoSafety can be selected to be
started with the START button, forward stepped with the FWD button, backward
stepped with the BWD button, and stopped with the STOP button.
If Task Panel Settings is set to Only Normal tasks, all STATIC and SEMISTATIC
tasks are greyed out and cannot be selected in the task panel, Quickset menu (see
Operating manual - IRC5 with FlexPendant, section Quickset menu). All STATIC
and SEMISTATIC tasks will be started if the start button is pressed.
If Task Panel Settings is set to All tasks, STATIC and SEMISTATIC tasks with
TrustLevelNoSafety can be selected in the task panel. All selected STATIC and
SEMISTATIC tasks can be stopped, stepped, and started. .
A STATIC or SEMISTATIC task, not selected in the task panel, can still be executing.
This is not possible for a NORMAL task.
Run Mode is always continuous for STATIC and SEMISTATIC tasks. The Run Mode
setting in the Quickset menu is only applicable for NORMAL tasks (see Operating
manual - IRC5 with FlexPendant, section Quickset menu).
This will only work in manual mode, no STATIC or SEMISTATIC task can be started,
stepped, or stopped in auto mode.

Task Panel Settings
To start the Task Panel Settings, tap the ABB menu, and then Control Panel,
FlexPendant and Task Panel Settings.

Selecting tasks
Use this procedure to select which of the tasks are to be started with the START
button.

Action

Set the controller to manual mode.1

On the FlexPendant, tap the QuickSet button and then the tasks panel button to show
all tasks.

2

If Task Panel Settings is set toOnly Normal tasks, all STATIC and SEMISTATIC tasks
are greyed out and cannot be selected.
If Task Panel Settings is set to All tasks, STATIC and SEMISTATIC tasks with Trust-
LevelNoSafety can be selected, while STATIC and SEMISTATIC tasks with TrustLevel
set to other values are grayed out and cannot be selected.

Select the check boxes for the tasks whose program should be started by the START
button.

3

Continues on next page
Application manual - Controller software IRC5 333
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.4.4 Select which tasks to start with START button

Resetting debug settings in manual mode
Use this procedure to resume normal execution manual mode.

Action

Select Only Normal tasks in the Task Panel Settings.1

Press START button.2
All STATIC and SEMISTATIC will run continuously and not be stopped by the STOP
button or emergency stop.

Switching to auto mode
When switching to auto mode, all STATIC and SEMISTATIC tasks will be deselected
from the tasks panel. The stopped STATIC and SEMISTATIC tasks will start next
time any of the START, FWD or BWD button are pressed. These tasks will then
run continuously forward and not be stopped by the STOP button or emergency
stop.
What happens with NORMAL tasks that has been deselected in the tasks panel
depends on the system parameter Reset in type Auto Condition Reset in topic
Controller. If Reset is set to Yes, all NORMAL tasks will be selected in the tasks
panel and be started with the START button. If Reset is set to No, only those
NORMAL tasks selected in tasks panel will be started by the START button.

Note

Note that changing the value of the system parameter Reset will affect all the
debug resettings (for example speed override and simulated I/O). For more
information, see Technical reference manual - System parameters, section Auto
Condition Reset.

Restarting the controller
If the controller is restarted, all NORMAL tasks will keep their status while all
STATIC and SEMISTATIC tasks will be deselected from the tasks panel. As the
controller starts up all STATIC and SEMISTATIC tasks will be started and then run
continuously.

Deselect task in synchronized mode
If a task is in a synchronized mode, that is program pointer between SyncMoveOn

and SyncMoveOff, the task can be deselected but not reselected. The task cannot
be selected until the synchronization is terminated. If the execution continues, the
synchronization will eventually be terminated for the other tasks, but not for the
deselected task. The synchronization can be terminated for this task by moving
the program pointer to main or to a routine.
If the system parameter Reset is set to Yes, any attempt to change to Auto mode
will fail while a deselected task is in synchronized mode. Changing to Auto mode
should make all NORMAL tasks selected, and when this is not possible it is not
possible to change to Auto mode.

334 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.4.4 Select which tasks to start with START button
Continued

9.1.5 Communication between tasks

9.1.5.1 Persistent variables

About persistent variables
To share data between tasks, use persistent variables.
A persistent variable is global in all tasks where it is declared. The persistent
variable must be declared as the same type and size (array dimension) in all tasks.
Otherwise a runtime error will occur.
It is sufficient to specify an initial value for the persistent variable in one task. If
initial values are specified in several tasks, only the initial value of the first module
to load will be used.

Tip

When a program is saved, the current value of a persistent variable will be used
as initial value in the future. If this is not desired, reset the persistent variable
directly after the communication.

Example with persistent variable
In this example the persistent variables startsync and stringtosend are
accessed by both tasks, and can therefore be used for communication between
the task programs.
Main task program:

MODULE module1

PERS bool startsync:=FALSE;

PERS string stringtosend:="";

PROC main()

stringtosend:="this is a test";

startsync:= TRUE

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS bool startsync;

PERS string stringtosend;

PROC main()

WaitUntil startsync;

IF stringtosend = "this is a test" THEN

...

ENDIF

!reset persistent variables

startsync:=FALSE;

stringtosend:="";

ENDPROC

ENDMODULE

Continues on next page
Application manual - Controller software IRC5 335
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.1 Persistent variables

Module for common data
When using persistent variables in several tasks, there should be declarations in
all the tasks. The best way to do this, to avoid type errors or forgetting a declaration
somewhere, is to declare all common variables in a system module. The system
module can then be loaded into all tasks that require the variables.

336 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.1 Persistent variables
Continued

9.1.5.2 Waiting for other tasks

Two techniques
Some applications have task programs that execute independently of other tasks,
but often task programs need to know what other tasks are doing.
A task program can be made to wait for another task program. This is accomplished
either by setting a persistent variable that the other task program can poll, or by
setting a signal that the other task program can connect to an interrupt.

Polling
This is the easiest way to make a task program wait for another, but the performance
will be the slowest. Persistent variables are used together with the instructions
WaitUntil or WHILE.
If the instruction WaitUntil is used, it will poll internally every 100 ms.

CAUTION

Do not poll more frequently than every 100 ms. A loop that polls without a wait
instruction can cause overload, resulting in lost contact with the FlexPendant.

Polling example
Main task program:

MODULE module1

PERS bool startsync:=FALSE;

PROC main()

startsync:= TRUE;

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS bool startsync:=FALSE;

PROC main()

WaitUntil startsync;

! This is the point where the execution

! continues after startsync is set to TRUE

...

ENDPROC

ENDMODULE

Interrupt
By setting a signal in one task program and using an interrupt in another task
program, quick response is obtained without the work load caused by polling.
The drawback is that the code executed after the interrupt must be placed in a trap
routine.

Continues on next page
Application manual - Controller software IRC5 337
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.2 Waiting for other tasks

Interrupt example
Main task program:

MODULE module1

PROC main()

SetDO do1,1;

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

VAR intnum intno1;

PROC main()

CONNECT intno1 WITH wait_trap;

ISignalDO do1, 1, intno1;

WHILE TRUE DO

WaitTime 10;

ENDWHILE

ENDPROC

TRAP wait_trap

! This is the point where the execution

! continues after do1 is set in main task

...

IDelete intno1;

ENDTRAP

ENDMODULE

338 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.2 Waiting for other tasks
Continued

9.1.5.3 Synchronizing between tasks

Synchronizing using WaitSyncTask
Synchronization is useful when task programs are depending on each other. No
task program will continue beyond a synchronization point in the program code
until all task programs have reached that point in the respective program code.
The instruction WaitSyncTask is used to synchronize task programs. No task
program will continue its execution until all task programs have reached the same
WaitSyncTask instruction.

WaitSyncTask example
In this example, the background task program calculates the next object's position
while the main task program handles the robots work with the current object.
The background task program may have to wait for operator input or I/O signals,
but the main task program will not continue with the next object until the new
position is calculated. Likewise, the background task program must not start the
next calculation until the main task program is done with one object and ready to
receive the new value.
Main task program:

MODULE module1

PERS pos object_position:=[0,0,0];

PERS tasks task_list{2} := [["MAIN"], ["BACK1"]];

VAR syncident sync1;

PROC main()

VAR pos position;

WHILE TRUE DO

!Wait for calculation of next object_position

WaitSyncTask sync1, task_list;

position:=object_position;

!Call routine to handle object

handle_object(position);

ENDWHILE

ENDPROC

PROC handle_object(pos position)

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS pos object_position:=[0,0,0];

PERS tasks task_list{2} := [["MAIN"], ["BACK1"]];

VAR syncident sync1;

Continues on next page
Application manual - Controller software IRC5 339
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.3 Synchronizing between tasks

PROC main()

WHILE TRUE DO

!Call routine to calculate object_position

calculate_position;

!Wait for handling of current object

WaitSyncTask sync1, task_list;

ENDWHILE

ENDPROC

PROC calculate_position()

...

object_position:= ...

ENDPROC

ENDMODULE

340 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.3 Synchronizing between tasks
Continued

9.1.5.4 Using a dispatcher

What is a dispatcher?
A digital signal can be used to indicate when another task should do something.
However, it cannot contain information about what to do.
Instead of using one signal for each routine, a dispatcher can be used to determine
which routine to call. A dispatcher can be a persistent string variable containing
the name of the routine to execute in another task.

Dispatcher example
In this example, the main task program calls routines in the background task by
setting routine_string to the routine name and then setting do5 to 1. In this
way, the main task program initialize that the background task program should
execute the routine clean_gun first and then routine1.
Main task program:

MODULE module1

PERS string routine_string:="";

PROC main()

!Call clean_gun in background task

routine_string:="clean_gun";

SetDO do5,1;

WaitDO do5,0;

!Call routine1 in background task

routine_string:="routine1";

SetDO do5,1;

WaitDO do5,0;

...

ENDPROC

ENDMODULE

Background task program:
MODULE module2

PERS string routine_string:="";

PROC main()

WaitDO do5,1;

%routine_string%;

SetDO do5,0;

ENDPROC

PROC clean_gun()

...

ENDPROC

PROC routine1()

...

Continues on next page
Application manual - Controller software IRC5 341
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.4 Using a dispatcher

ENDPROC

ENDMODULE

342 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.5.4 Using a dispatcher
Continued

9.1.6 Other programming issues

9.1.6.1 Share resource between tasks

Flag indicating occupied resource
System resources, such as FlexPendant, file system and I/O signals, are available
from all tasks. However, if several task programs use the same resource, make
sure that they take turns using the resource, rather than using it at the same time.
To avoid having two task programs using the same resource at the same time, use
a flag to indicate that the resource is already in use. A boolean variable can be set
to true while the task program uses the resource.
To facilitate this handling, the instruction TestAndSet is used. It will first test the
flag. If the flag is false, it will set the flag to true and return true. Otherwise, it will
return false.

Example with flag and TestAndSet
In this example, two task programs try to write three lines each to the FlexPendant.
If no flag is used, there is a risk that these lines are mixed with each other. By using
a flag, the task program that first execute the TestAndSet instruction will write all
three lines first. The other task program will wait until the flag is set to false and
then write all its lines.
Main task program:

PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from MAIN";

TPWrite "Second line from MAIN";

TPWrite "Third line from MAIN";

tproutine_inuse := FALSE;

Background task program:
PERS bool tproutine_inuse := FALSE;

...

WaitUntil TestAndSet(tproutine_inuse);

TPWrite "First line from BACK1";

TPWrite "Second line from BACK1";

TPWrite "Third line from BACK1";

tproutine_inuse := FALSE;

Application manual - Controller software IRC5 343
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.6.1 Share resource between tasks

9.1.6.2 Test if task controls mechanical unit

Two functions for inquiring
There are functions for checking if the task program has control of any mechanical
unit, TaskRunMec, or of a robot, TaskRunRob.
TaskRunMecwill return true if the task program controls a robot or other mechanical
unit. TaskRunRob will only return true if the task program controls a robot with
TCP.
TaskRunMec and TaskRunRob are useful when using MultiMove. With MultiMove
you can have several tasks controlling mechanical units, see Application
manual - MultiMove.

Note

For a task to have control of a robot, the parameter Type must be set to normal,
and the typeMotionTaskmust be set to YES. SeeSystemparameters on page325.

Example with TaskRunMec and TaskRunRob
In this example, the maximum speed for external equipment is set. If the task
program controls a robot, the maximum speed for external equipment is set to the
same value as the maximum speed for the robot. If the task program controls
external equipment but no robot, the maximum speed is set to 5000 mm/s.

IF TaskRunMec() THEN

IF TaskRunRob() THEN

!If task controls a robot

MaxExtSpeed := MaxRobSpeed();

ELSE

!If task controls other mech unit than robot

MaxExtSpeed := 5000;

ENDIF

ENDIF

344 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.6.2 Test if task controls mechanical unit

9.1.6.3 taskid

taskid syntax
A task always has a predefined variable of type taskid that consists of the name
of the task and the suffix "Id". For example, the variable name of the MAIN task is
MAINId.

Code example
In this example, the module PART_A is saved in the task BACK1, even though the
Save instruction is executed in another task.
BACK1Id is a variable of type taskid that is automatically declared by the system.

Save \TaskRef:=BACK1Id, "PART_A"

\FilePath:="HOME:/DOORDIR/PART_A.MOD";

Application manual - Controller software IRC5 345
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.6.3 taskid

9.1.6.4 Avoid heavy loops

Background tasks loop continuously
A task program is normally executed continuously. This means that a background
task program is in effect an eternal loop. If this program does not have any waiting
instruction, the background task may use too much computer power and make the
controller unable to handle the other tasks.

Example
MODULE background_module

PROC main()

WaitTime 1;

IF di1=1 THEN

...

ENDIF

ENDPROC

ENDMODULE

If there was no wait instruction in this example and di1was 0, then this background
task would use up the computer power with a loop doing nothing.

346 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.1.6.4 Avoid heavy loops

9.2 Sensor Interface [628-1]

9.2.1 Introduction to Sensor Interface

Purpose
The option Sensor Interface is used for communication with external sensors via
a serial or Ethernet channel.
The sensor may be accessed using a package of RAPID instructions that provide
the ability to read and write raw sensor data.
An interrupt feature allows subscriptions on changes in sensor data.

Tip

The communication provided by Sensor Interface is integrated in arc welding
instructions for seam tracking and adaptive control of process parameters. These
instructions handle communication and corrections for you, whereas with Sensor
Interface you handle this yourself. For more information, see Application
manual - Arc and Arc Sensor and Application manual - Continuous Application
Platform.

What is included
The RobotWare option Sensor Interface gives you access to:

• ABB supported sensor protocols.
• Instruction used to connect to a sensor device: SenDevice.
• Instruction used to set up interrupt, based on input from the

sensor:IVarValue.
• Instruction used to write to a sensor: WriteVar.
• Function for reading from a sensor: ReadVar.
• Laser Tracker Calibration (LTC) functionality for optical sensor calibration.

Basic approach
This is the basic approach for using Sensor Interface.

1 Configure the sensor. See Configuring sensors on page 348.
2 Use interrupts in the RAPID code to make adjustments according to the input

from the sensor. For an example, see Interrupt welding to adjust settings on
page 354.

Limitations
Interrupts with IVarValue is only possible to use with the instructions ArcL, ArcC,
CapL, and CapC. The switch Track must be used. That is, the controller must be
equipped with either RobotWare Arc or Continuous Application Platform together
with Optical Tracking, or with the option Weldguide.

Application manual - Controller software IRC5 347
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.1 Introduction to Sensor Interface

9.2.2 Configuring sensors

9.2.2.1 About the sensors

Supported sensors
Sensor Interface supports:

• Sensors connected via serial channels using the RTP1 protocol. For
configuration, see Configuring sensors on serial channels on page 349.

• Sensors connected to Ethernet using the RoboCom Light protocol from
Servo-Robot Inc, the LTAPP or the LTPROTOBUF protocol from ABB. For
configuration, see Configuring sensors on Ethernet channels on page 350.

348 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.2.1 About the sensors

9.2.2.2 Configuring sensors on serial channels

Overview
Sensor Interface communicates with a maximum of one sensor over serial channels
using the RTP1 protocol.

System parameters
This is a brief description of the parameters used when configuring a sensor. For
more information about the parameters, see Technical reference manual - System
parameters.
These parameters belong to the type Transmission Protocol in the topic
Communication.

DescriptionParameter

The name of the transmission protocol.Name
For a sensor the name must end with ":". For example "laser1:" or
"swg:".

The type of transmission protocol.Type
For a sensor using serial channel, it must be "RTP1".

The name of the serial port that will be used for the sensor. This refers
to the parameter Name in the type Serial Port.

Serial Port

For information on how to configure a serial port, see Technical refer-
ence manual - System parameters.

Configuration example
This is an example of how a transmission protocol can be configured for a sensor.
We assume that there already is a serial port configured with the name "COM1".

Serial PortTypeName

COM1RTP1laser1:

Application manual - Controller software IRC5 349
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.2.2 Configuring sensors on serial channels

9.2.2.3 Configuring sensors on Ethernet channels

Overview
Sensor Interface can communicate with a maximum of six sensors over Ethernet
channel using the RoboCom Light protocol version E04 (from Servo-Robot Inc),
the LTAPP or the LTPROTOBUF protocol (from ABB). RoboCom Light is an XML
based protocol using TCP/IP.
The sensor acts as a server, the robot controller acts as a client. I.e. the robot
controller initiates the connection to the sensor.
RoboCom Light has the default TCP port 6344 on the external sensor side, and
LTAPPTCP has the default TCP port 5020.

System parameters
This is a brief description of the parameters used when configuring a sensor. For
more information about the parameters, see Technical reference manual - System
parameters.
These parameters belong to the type Transmission Protocol in the topic
Communication.

DescriptionParameter

The name of the transmission protocol.Name
For a sensor the name must end with ":". For example "laser1:" or
"swg:".

The type of transmission protocol.Type
For RoboCom Light the protocol type SOCKDEV has to be configured,
and for LTAPPTCP it is LTAPPTCP.

The name of the serial port that will be used for the sensor. This refers
to the parameter Name in the type Serial Port.

Serial Port

For information on how to configure a serial port, see Technical refer-
ence manual - System parameters.
For IP based transmission protocols (i.e. Type has value TCP/IP,
SOCKDEV, LTAPPTCP or UDPUC), Serial Port is not used and has
the value N/A.

The IP address of the sensor. This refers to the type Remote Address.Remote Address
For information on how to configure Remote Address, see Technical
reference manual - System parameters.

Remote Port specifies the port number on the network node identified
by Remote Address with which the connection shall be established.

Remote Port

The default value for SOCKDEV is 6344, and for LTAPPTCP it is 5020.

Configuration examples
These are examples of how a transmission protocol can be configured for a sensor.

Remote PortRemote AddressSerial PortTypeName

6344192.168.125.101N/ASOCKDEVlaser2:

5020192.168.125.102N/ALTAPPTCPlaser3:

350 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.2.3 Configuring sensors on Ethernet channels

9.2.3 RAPID

9.2.3.1 RAPID components

Data types
There are no data types for Sensor Interface.

Instructions
This is a brief description of each instruction in Sensor Interface. For more
information, see respective instruction in Technical reference manual - RAPID
Instructions, Functions and Data types.

DescriptionInstruction

SenDevice is used, to connect to a physical sensor device.SenDevice

IVarVal (Interrupt Variable Value) is used to order and enable an interrupt
when the value of a variable accessed via the sensor interface is changed.

IVarValue

ReadBlock is used to read a block of data from a device connected to the
serial sensor interface. The data is stored in a file.

ReadBlock

ReadBlock can only be used with a serial channel connected sensor (not
Ethernet connected sensor.)

WriteBlock is used to write a block of data to a device connected to the
serial sensor interface. The data is fetched from a file.

WriteBlock

WriteBlock can only be used with a serial channel connected sensor (not
Ethernet connected sensor.)

WriteVar is used to write a variable to a device connected to the sensor
interface.

WriteVar

Functions
This is a brief description of each function in Sensor Interface. For more information,
see respective function in Technical reference manual - RAPID Instructions,
Functions and Data types.

DescriptionFunction

ReadVar is used to read a variable from a device connected to the sensor
interface.

ReadVar

Modules
The option Sensor Interface includes one system module, LTAPP__Variables. This
module contains the variable numbers defined in the protocol LTAPP. It is
automatically loaded as SHARED and makes the variables (CONST num) available
in all RAPID tasks.
Note! A copy of the module is placed in the robot system directory HOME/LTC,
but the copy is NOT the loaded module.

Continues on next page
Application manual - Controller software IRC5 351
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.3.1 RAPID components

Constants

DescriptionRead/write
(R/W)

NumberName

A value that identifies the sensor soft-
ware version.

R1LTAPP__VERSION

Reset the sensor to the initial state,
regardless of what state it is currently
in.

W3LTAPP__RESET

Sensor returns a response indicating
its status.

W4LTAPP__PING

Start camera check of the sensor. If
this cannot be done within the time
limit specified in the link protocol a Not
ready yet status will be returned.

W5LTAPP__CAMCHECK

Turn power on (1) or off (0) for the
sensor and initialize the filters. (Power
on can take several seconds!)

RW6LTAPP__POWER_UP

Switch the laser beam off (1) or on (0)
and measure.

RW7LTAPP__LASER_OFF

Measured X value, unsigned word. The
units are determined by the variable
Unit.

R8LTAPP__X

Measured Y value, unsigned word. The
units are determined by the variable
Unit.

R9LTAPP__Y

Measured Z value, unsigned word. The
units are determined by the variable
Unit.

R10LTAPP__Z

The gap between two sheets of metal.
The units are determined by the vari-
able Unit, -32768 if not valid.

R11LTAPP__GAP

Mismatch, unsigned word. The units
are determined by the variable Unit.
-32768 if not valid.

R12LTAPP__MISMATCH

Seam area, units in mm2, -32768 if not
valid.

R13LTAPP__AREA

Plate thickness of sheet that the
sensor should look for, LSB=0.1mm.

RW14LTAPP__THICKNESS

Step direction of the joint: Step on left
(1) or right (0) side of path direction.

RW15LTAPP__STEPDIR

Set or get active joint number.RW16LTAPP__JOINT_NO

Time since profile acquisition (ms),
unsigned word.

R17LTAPP__AGE

Angle of the normal to the joint relative
sensor coordinate system Z direction
- in 0.1 degrees.

R18LTAPP__ANGLE

Units of X, Y, Z, gap, and mismatch.
0= 0.1mm, 1= 0.01mm.

RW19LTAPP__UNIT

Reserved for internal use.-20-

Servo robot only! Adaptive parameter
1

R31LTAPP__APM_P1

Continues on next page
352 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.3.1 RAPID components
Continued

DescriptionRead/write
(R/W)

NumberName

Servo robot only! Adaptive parameter
2

R32LTAPP__APM_P2

Servo robot only! Adaptive parameter
3

R33LTAPP__APM_P3

Servo robot only! Adaptive parameter
4

R34LTAPP__APM_P4

Servo robot only! Adaptive parameter
5

R35LTAPP__APM_P5

Servo robot only! Adaptive parameter
6

R36LTAPP__APM_P6

Measured angle around sensor Y axisR51LTAPP__ROT_Y

Measured angle around sensor Z axis
A

R52LTAPP__ROT_Z

Scansonic sensors only. Measured X
value line 1, unsigned word. The units
are determined by the variable Unit.

R54LTAPP__X0

Scansonic sensors only. Measured Y
value line 1, unsigned word. The units
are determined by the variable Unit.

R55LTAPP__Y0

Scansonic sensors only. Measured Z
value line 1, unsigned word. The units
are determined by the variable Unit.

R56LTAPP__Z0

Scansonic sensors only. Measured X
value line 2, unsigned word. The units
are determined by the variable Unit.

R57LTAPP__X1

Scansonic sensors only. Measured Y
value line 2, unsigned word. The units
are determined by the variable Unit.

R58LTAPP__Y1

Scansonic sensors only. Measured Z
value line 2, unsigned word. The units
are determined by the variable Unit.

R59LTAPP__Z1

Scansonic sensors only. Measured X
value line 3, unsigned word. The units
are determined by the variable Unit.

R60LTAPP__X2

Scansonic sensors only. Measured Y
value line 3, unsigned word. The units
are determined by the variable Unit.

R61LTAPP__Y2

Scansonic sensors only. Measured Z
value line 3, unsigned word. The units
are determined by the variable Unit.

R62LTAPP__Z2

Application manual - Controller software IRC5 353
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.3.1 RAPID components

Continued

9.2.4 Examples

9.2.4.1 Code examples

Interrupt welding to adjust settings
This is an example of a welding program where a sensor is used. The sensor reads
the gap (in mm) and an interrupt occurs every time the value from the sensor
changes. The new value from the sensor is then used to determine correct settings
for voltage, wire feed and speed.

LOCAL PERS num adptVlt{8}:=

[1,1.2,1.4,1.6,1.8,2,2.2,2.5];

LOCAL PERS num adptWfd{8}:=

[2,2.2,2.4,2.6,2.8,3,3.2,3.5];

LOCAL PERS num adptSpd{8}:=

[10,12,14,16,18,20,22,25];

LOCAL CONST num GAP_VARIABLE_NO:=11;

PERS num gap_value:=0;

PERS trackdata track:=[0,FALSE,150,[0,0,0,0,0,0,0,0,0],
[3,1,5,200,0,0,0]];

VAR intnum IntAdap;

PROC main()

! Setup the interrupt. The trap routine AdapTrap will be called

! when the gap variable with number GAP_VARIABLE_NO in the sensor

! interface has been changed. The new value will be available in

! the gap_value variable.

CONNECT IntAdap WITH AdapTrap;

IVarValue "laser1:", GAP_VARIABLE_NO, gap_value, IntAdap;

! Start welding

ArcLStart p1,v100,adaptSm,adaptWd,fine, tool\j\Track:=track;

ArcLEnd p2,v100,adaptSm,adaptWd,fine, tool\j\Track:=track;

ENDPROC

TRAP AdapTrap

VAR num ArrInd;

! Scale the raw gap value received

ArrInd:=ArrIndx(gap_value);

! Update active weld data variable adaptWd with new data from

! the predefined parameter arrays.

! The scaled gap value is used as index in the voltage,

! wirefeed and speed arrays.

adaptWd.weld_voltage:=adptVlt{ArrInd};

adaptWd.weld_wirefeed:=adptWfd{ArrInd};

adaptWd.weld_speed:=adptSpd{ArrInd};

! Request a refresh of welding parameters using the new data

! in adaptWd

Continues on next page
354 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.4.1 Code examples

ArcRefresh;

ENDTRAP

FUNC ArrIndx(num value)

IF value < 0.5 THEN RETURN 1;

ELSEIF value < 1.0 THEN RETURN 2;

ELSEIF value < 1.5 THEN RETURN 3;

ELSEIF value < 2.0 THEN RETURN 4;

ELSEIF value < 2.5 THEN RETURN 5;

ELSEIF value < 3.0 THEN RETURN 6;

ELSEIF value < 3.5 THEN RETURN 7;

ELSE RETURN 8;

ENDIF

ENDFUNC

Reading positions from sensor
In this example, the sensor is turned on and the coordinates are read from the
sensor.

! Define variable numbers

CONST num SensorOn := 6;

CONST num YCoord := 9;

CONST num ZCoord := 10;

! Define the transformation matrix

CONST pose SensorMatrix := [[100,0,0],[1,0,0,0]];

VAR pos SensorPos;

VAR pos RobotPos;

! Request start of sensor measurements

WriteVar SensorOn, 1;

! Read a Cartesian position from the sensor

SensorPos.x := 0;

SensorPos.y := ReadVar (YCoord);

SensorPos.z := ReadVar (ZCoord);

! Stop sensor

WriteVar SensorOn, 0;

! Convert to robot coordinates

RobotPos := PoseVect(SensorMatrix, SensorPos);

Application manual - Controller software IRC5 355
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.2.4.1 Code examples

Continued

9.3 Robot Reference Interface [included in 689-1]

9.3.1 Introduction to Robot Reference Interface

Introduction
Robot Reference Interface is included in the RobotWare option Externally Guided
Motion. It can be used for 4-axis, 6-axis, and 7-axis robots.
Robot Reference Interface supports data exchange on the cyclic channel. It provides
the possibility to periodically send planned and actual robot position data from the
robot controller, as well as the exchange of other RAPID variables from and to the
robot controller. The message contents are represented in XML format and are
configured using appropriate sensor configuration files.

Robot Reference Interface
The cyclic communication channel (TCP or UDP) can be executed in the high-priority
network environment of the IRC5 Controller which ensures a stable data exchange
up to 250Hz.

Robot Sensor

Rapid data

Motion data

RRI
Cyclic channel (TCP or UDP)

read/write Receive commands,

parameters and

robot data

Return parameters

and sensor data

read only

Cabinet status read only

xx0800000128

356 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.1 Introduction to Robot Reference Interface

9.3.2 Installation

9.3.2.1 Connecting the communication cable

Overview
This section describes where to connect the communication cable on the controller.
For further instructions, see the corresponding product manual for your robot
system.

Location

A

B

xx1300000609

Service port on the computer unit (connected to the service port on the controller)A

WAN port on the computer unitB

NoteAction

Note

The service connection can only be
used if it is free.

Use one of these two connections (A or B).1

Application manual - Controller software IRC5 357
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.2.1 Connecting the communication cable

9.3.2.2 Prerequisites

Overview
This section describes the prerequisites for using Robot Reference Interface.

UDP/IP or TCP IP
Robot Reference Interface supports the communication over the standard IP
protocols UDP or TCP.

Recommendations
The delay in the overall communication mostly depends on the topology of the
employed network. In a switched network the transmission will be delayed due to
buffering of the messages in the switches. In a parallel network collisions with
multiple communication partners will lead to messages being resent.
Therefore we recommended using a dedicated Ethernet link between the external
system and the robot controller to provide the required performance for real-time
applications. Robot Reference Interface can be used to communicate with any
processor-based devices, that support IP via Ethernet and can serialize data into
XML format.

358 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.2.2 Prerequisites

9.3.2.3 Data orchestration

Overview
The outgoing message can be combined from any data from the RAPID level and
internal data from the cabinet and motion topic. The orchestration of the data is
defined in the device configuration by setting the Link attribute of internally linked
data to Intern.

Illustration

xx0800000178

Data from the Controller topic

CommentDescriptionTypeName

The mapping of the members for the Op-
Mode type can be defined in the configura-
tion file.

Operation mode
of the robot.

OpModeOperationMode

Data from the Motion topic

CommentDescriptionTypeName

There is a delay of approxim-
ately 8ms.

Time stamp for the robot posi-
tion from drive feedback.

TimeFeedbackTime

Current tool and workobject
are used for calculation.

Note

The work object data needs to
refer to a fixed work object.
For example, it will not work
with conveyor tracking. For
more information about
wobjdata, see Technical ref-
erencemanual - RAPID Instruc-
tions, Functions and Data
types.

Robot TCP calculated from
drive feedback.

FrameFeedbackPose

Robot joint values gathered
from drive feedback.

JointsFeedbackJoints

Continues on next page
Application manual - Controller software IRC5 359
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.2.3 Data orchestration

CommentDescriptionTypeName

Prediction time from approxim-
ately 24ms to 60ms depending
on robot type.

Timestamp for planned robot
TCP position and joint values.

TimePredictedTime

Current tool and workobject
are used for calculation.

Planned robot TCP.FramePlannedPose

Planned robot joint values.JointsPlannedJoints

360 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.2.3 Data orchestration
Continued

9.3.2.4 Supported data types

Overview
This section contains a short description of theRobot Reference Interface supported
data types, for more detailed information about the supported data types see
References on page 11.

Data types
Robot Reference Interface supports the following simple data types:

RAPID type mappingDescriptionData type

boolBoolean value.bool

numSingle precision, floating point value.real

numTime in seconds expressed as floating point value.time

stringString with max length of 80 characters.string

poseCartesian position and orientation in Euler Angles
(Roll-Pitch-Jaw).

frame

robjointRobot joint values.joint

In addition, user-defined records can also be transferred from the external system
to the robot controller, which are composed from the supported simple data types.
User defined record types must be specified in the configuration file of the external
device. See Device configuration on page 367 for a description on how to create
user-defined record types.

Application manual - Controller software IRC5 361
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.2.4 Supported data types

9.3.3 Configuration

9.3.3.1 Interface configuration

Configuration files
The configuration and settings files for the interface must be located in the folder
HOME/GSI. This ensures that the configuration files are included in system backups.

xx0800000177

Related information
For more detailed information of the Settings.xml file see Interface settings on
page 363.
For more detailed information of the Description.xml file see Device description
on page 364.
For more detailed information of the Configuration.xml file see Device configuration
on page 367.

362 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.1 Interface configuration

9.3.3.2 Interface settings

Overview
This section describes the use of the xml file Settings.xml.

Settings.xml
The settings file Settings.xml contains the general settings for the GSI interface.
It is located in the folder HOME/GSI. For the option Robot Reference Interface this
file refers to a list of all communication clients for external systems installed in the
controller. The Settings.xml file can be defined according to the XML schema
Settings.xsd.

Example
For each communication client installed on the controller, the file Settings.xml must
contain a Client entry in the Clients section. The Convention attribute identifies the
protocol convention used by the client, for the Robot Reference Interface option
only CDP is supported. The Name attribute identifies the name of the client and
also specifies the folder with the device related configuration files.

<?xml version="1.0" encoding="UTF-8"?>

<Settings>

<Clients>

<Client Convention="CDP" Name="MySensor" />

</Clients>

</Settings>

CDP stands for cyclic data protocol and is the internal name of the protocol, on
which Robot Reference Interface messages are transferred.
An internal client node of the interface module will be created, which is able to
connect to the external system MySensor that runs a data server application and
can communicate via Robot Reference Interface with the robot.
For each sensor system, a subdirectory named with the sensor system identifier,
for example MySensor, contains further settings.

Application manual - Controller software IRC5 363
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.2 Interface settings

9.3.3.3 Device description

Overview
This section describes the use of the xml file Description.xml.

Description.xml
The device description file Description.xml is located in the corresponding
subdirectory of the device. It specifies the general device parameters, network
connection and CDP specific communication settings for an installed device. A
device description can be defined according to the XML schema Description.xsd.

Example
This is an example of a device description:

<?xml version="1.0" encoding="utf-8"?>

<Description>

<Name>AnyDevice</Name>

<Convention>CDP</Convention>

<Type>IntelligentCamera</Type>

<Class>MachineVision</Class>

<Network Address="10.49.65.74" Port="Service">

<Channel Type="Cyclic" Protocol="Udp" Port="3002" />

</Network>

<Settings>

<TimeOut>2000</TimeOut>

<MaxLost>30</MaxLost>

<DryRun>false</DryRun>

</Settings>

</Description>

Name
The first section defines the general device parameters. The Name element
identifies the name of the device and should correspond to the device name
specified in the settings file. It must correspond to the identifier specified for the
device descriptor on the RAPID level, because the descriptor name will be used
initially to refer to the device in the RAPID instructions.

CommentValueDescriptionAttributeElement

Maximum 16 charactersAny stringDevice identifierName

Convention
The Convention element identifies the protocol that should be used by the device,
for the Robot Reference Interface option only the Cyclic Data Protocol (CDP) is
supported.

CommentValueDescriptionAttributeElement

CDPProtocol typeConvention

Continues on next page
364 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.3 Device description

Type and Class
The Type and Class elements identifies the device type and class and are currently
not validated, therefore they can also contain undefined device types or classes.

CommentValueDescriptionAttributeElement

Not validatedAny stringSensor typeType

Not validatedAny stringSensor classClass

Network
The Network section defines the network connection settings for the device. The
Address attribute specifies the IP address or host name of the device on the
network. The optional Port attribute is used to specify the physical Ethernet port
on the controller side that the cable is plugged into. Valid values are WAN and
Service. The attribute can be omitted if the WAN port is used for communication.

CommentValueDescriptionAttributeElement

Network settingsNetwork

10.49.65.249Any valid IP ad-
dress or host
name

IP address or host name
of the device

Address
DE-L-0328122

Optional. Can be omit-
ted if WAN port is
used.

WAN
Service

Physical Ethernet port on
the controller

Port

Channel
The Channel element defines the settings for the communication channel between
the robot controller and the external device. The Type attribute identifies the channel
type, only Cyclic is supported by Robot Reference Interface.
The Protocol attribute identifies the IP protocol used on the channel, for Robot
Reference Interface you can specify to use Tcp or Udp. The Port attribute specifies
the logical port number for the channel on the device side.

CommentValueDescriptionAttributeElement

Channel settingsChannel

CyclicChannel typeType

TcpThe IP protocol typeProtocol
Udp

Any available port num-
ber on the device, maxim-
um 65535.

uShortThe logical port num-
ber of the channel

Port

Continues on next page
Application manual - Controller software IRC5 365
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.3 Device description

Continued

Settings
The Settings section contains communication parameters specific to the CDP
protocol. The TimeOut element defines the timeout for not received messages.
This element identifies the time until the connection is considered broken and is
only needed for bidirectional communication. The MaxLost attribute defines the
maximum number of not acknowledged or lost messages allowed. The DryRun
element identifies, if the acknowledgement of messages is supervised and can be
used to setup an unidirectional communication.

CommentValueDescriptionElement

Time in milliseconds, a multiple of 4
ms.

Time out for commu-
nication

TimeOut

IntegerMaximum loss of
packages allowed

MaxLost

If TRUE, TimeOut and MaxLost will not
be checked.

BoolInterface run modeDryRun

If the element DryRun in the Description.xml is set to FALSE, communication
supervision is established on the protocol level of the Robot Reference Interface,
using the settings for TimeOut and MaxLost. This supervision requires that each
message that is sent out from the robot controller is answered by the connected
device. The supervision generates a communication error, if the maximum response
time or the maximum number of lost packages is exceeded. Each sent out message
has an ID, which needs to be used for the ID in the reply too, to identify the reply
message and to detect which packages have been lost. See also the example in
section Transmitted XML messages on page 374.

366 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.3 Device description
Continued

9.3.3.4 Device configuration

Overview
The device configuration file Configuration.xml is located in the corresponding
subdirectory of the device. It defines the enumerated and complex types used by
the device and identifies the available parameters, which can be subscribed for
cyclic transmission. The configuration file can be defined according to the XML
schema Configuration.xsd. The following document shows a simplified device
configuration.

Example
<?xml version="1.0" encoding="utf-8"?>

<Configuration>

<Enums>

<Enum Name="opmode" Link="Intern">

<Member Name="ReducedSpeed" Alias="Alias"/>

</Enum>

</Enums>

<Records>

<Record Name="senddata">

<Field Name="PlannedPose" Type="Pose" Link="Intern" />

</Record>

</Records>

<Properties>

<Property Name="DataToSend" Type="senddata" Flag="WriteOnly"
/>

</Properties>

</Configuration>

Enums
In the Enums section each Enum element defines an enumerated type. The Name
attribute of the Enum element specifies the name of the enumerated type, the
optional Link attribute identifies if the members of the enumerated type have internal
linkage.

CommentValueDescriptionsAttributeElement

Maximum 16 characters.A valid RAPID
symbol name

Name of enumer-
ated type

NameEnum

Optional. Can be omitted if
members only have RAPID
linkage.

InternLinkage of mem-
bers of enumer-
ated type

Link

Continues on next page
Application manual - Controller software IRC5 367
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.4 Device configuration

Member
Each Member element defines a member element of the enumerated type. The
Name attribute specifies the name of the member on the controller side (on RAPID
level). The Alias attribute identifies the name of the member on the device side
(and in the transmitted message).

CommentValueDescriptionsAttributeElement

Maximum 16 characters.Valid
internal RAPID symbol
names. See Data orchestra-
tion on page 359.

A valid RAPID
symbol name

Name of enumer-
ated type mem-
ber

NameMember

Optional. The alias name is
used on the device side and
in message

StringAlias name of
enumerated type
member

Alias

Record
In the Records section each Record element defines a declaration of a complex
type. In RAPID this complex type will be represented as a RECORD declaration.
The Name attribute identifies the name of the complex type on the controller side.
The Alias attribute defines the alias name of the type on the device side and in the
message.

CommentValueDescriptionsAttributeElement

Maximum 16 characters.A valid RAPID
symbol name

Name of the com-
plex type.

NameRecord

Optional. The alias name is
used on the device side and
in message.

StringAlias name of
complex type.

Alias

Field
Each Field element defines a field element of a complex type. The Name attribute
identifies the name of the field. The Type attribute identifies the enumerated,
complex or simple type associated with the field. The Size attribute defines the
size of a multi-dimensional field. The Link attribute identifies if the field has internal
linkage.

CommentValueDescriptionsAttributeElement

Maximum 16 characters.Valid
internal RAPID symbol
names. See Data orchestra-
tion on page 359.

A valid RAPID
symbol name

Name of the com-
plex type field

NameField

Described in section Suppor-
ted data types on page 361.

All supported
data types

Data type of the
field

Type

Optional. Only basic types
can be defined as array.

IntegerDimensions of
the field (size of
array)

Size

Optional. Can be omitted if
field has RAPID linkage.

InternLinkage of com-
plex type field

Link

Optional. The alias name is
used on device side and in
message.

StringAlias name of
complex type
field

Alias

Continues on next page
368 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.4 Device configuration
Continued

Properties
In the Properties section each Property element defines a RAPID variable that can
be used in the SiGetCyclic and SiSetCyclic instructions.

CommentValueDescriptionsAttributeElement

Maximum 16 characters.An valid RAPID
symbol name

Name of the
property

NameProperty

Described in section Suppor-
ted data types on page 361.

All supported
data types

Data type of the
property

Type

Optional. Only basic types
can be defined as array.

IntegerDimension (Size
of array)

Size

Optional. Can be omitted if
property is read and write en-
abled.

None
ReadOnly
WriteOnly

Access FlagFlag

ReadWrite

Mandatory if field has RAPID
linkage.

InternLinkage of prop-
erty

Link

Optional. The alias name is
used on device side and in
message.

StringAlias name of the
property

Alias

Application manual - Controller software IRC5 369
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.3.4 Device configuration

Continued

9.3.4 Configuration examples

9.3.4.1 RAPID programming

RAPID module
A RAPID module containing the corresponding RAPID record declarations and
variable declarations must be created and loaded.
The FlexPendant user interface is not included in RobotWare.

370 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.4.1 RAPID programming

9.3.4.2 Example configuration

Overview
The files Settings.xml, Description.xml, and Configuration.xml are located in the
folder HOME\GSI\

xx0800000177

Note

The name of the folder must correspond to the name of the device. See Device
description on page 364. In this example we have used the name AnyDevice.
The network address used in Description.xml is to the PC running the server,
not the robot controller. See Device description on page 364.

Settings.xml
<?xml version="1.0" encoding="utf-8"?>

<Settings>

<Servers>

<Servers/>

<Clients>

<Client Convention="CDP" Name="AnyDevice" />

</Clients>

</Settings

Description.xml
<?xml version="1.0" encoding="utf-8"?>

<Description>

<Name>AnyDevice</Name>

<Convention>CDP</Convention>

<Type>IntelligentCamera</Type>

<Class>MachineVision</Class>

<Network Address="10.49.65.74" Port="Service">

<Channel Type="Cyclic" Protocol="Udp" Port="3002" />

</Network>

<Settings>

<TimeOut>2000</TimeOut>

Continues on next page
Application manual - Controller software IRC5 371
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.4.2 Example configuration

<MaxLost>30</MaxLost>

<DryRun>false</DryRun>

</Settings>

</Description>

Configuration.xml
<?xml version="1.0" encoding="utf-8" ?>

<Configuration>

<Enums>

<Enum Name="OperationMode" Link="Intern">

<Member Name="Automatic" Alias="Auto" />

<Member Name="ReducedSpeed" Alias="ManRS" />

<Member Name="FullSpeed" Alias="ManFS" />

</Enum>

</Enums>

<Records>

<Record Name="RobotData">

<Field Name="OperationMode" Type="OperationMode" Link="Intern"
Alias="RobMode" />

<Field Name="FeedbackTime" Type="Time" Link="Intern"
Alias="Ts_act" />

<Field Name="FeedbackPose" Type="Frame" Link="Intern"
Alias="P_act" />

<Field Name="FeedbackJoints" Type="Joints" Link="Intern"
Alias="J_act" />

<Field Name="PredictedTime" Type="Time" Link="Intern"
Alias="Ts_des" />

<Field Name="PlannedPose" Type="Frame" Link="Intern"
Alias="P_des" />

<Field Name="PlannedJoints" Type="Joints" Link="Intern"
Alias="J_des" />

<Field Name="ApplicationData" Type="Real" Size="18"
Alias="AppData" />

</Record>

<Record Name="SensorData">

<Field Name="ErrorString" Type="String" Alias="EStr" />

<Field Name="ApplicationData" Type="Real" Size="18"
Alias="AppData" />

</Record>

</Records>

<Properties>

<Property Name="RobData" Type="RobotData" Flag="WriteOnly"/>

<Property Name="SensData" Type="SensorData" Flag="ReadOnly"/>

</Properties>

</Configuration>

Continues on next page
372 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.4.2 Example configuration
Continued

RAPID configuration
This is an example for an RRI implementation. The out data uses an array of 18
num (robdata). The in data receives a string and an array of 18 num (sensdata).
This needs to defined according the file configuration.xml.

RECORD applicationdata

num Item1;

num Item2;

num Item3;

num Item4;

num Item5;

num Item6;

num Item7;

num Item8;

num Item9;

num Item10;

num Item11;

num Item12;

num Item13;

num Item14;

num Item15;

num Item16;

num Item17;

num Item18;

ENDRECORD

RECORD RobotData

applicationdata AppData;

ENDRECORD

RECORD SensorData

string ErrString;

applicationdata AppData;

ENDRECORD

! Sensor Declarations

PERS sensor AnyDevice := [1,4,0];

PERS RobotData RobData := [[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

PERS SensorData SensData :=
["No",[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];

! Setup Interface Procedure

PROC RRI_Open()

SiConnect AnyDevice;

! Send and receive data cyclic with 64 ms rate

SiGetCyclic AnyDevice, SensData, 64;

SiSetCyclic AnyDevice, RobData, 64;

ENDPROC

! Close Interface Procedure

PROC RRI_Close()

! Close the connection

SiClose RsMaster;

ENDPROC

ENDMODULE

Continues on next page
Application manual - Controller software IRC5 373
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.4.2 Example configuration

Continued

Transmitted XML messages
Each XML message has the data variable name as root element with the attributes
Id (the message ID) and Ts (the time stamp of the message). The subelements
are then the record fields. The values of a multiple value field (array or record) are
expressed as attributes.

Message sent out from robot controller
The time unit is second (float) with a resolution of 1 ms. The position (length) unit
is millimeter (float). The position (angle) unit is radians.

DescriptionData typeName

Last received robot data message IDIntegerId

Time stamp (message)FloatTs

Operation modeOperationmodeRobMode

Time stamp (actual position)FloatTS_act

Actual cartesian positionPoseP_act

Actual joint positionJointJ_act

Time stamp (desired position)FloatTS_des

Desired cartesian positionPoseP_des

Desired joint positionJointJ_des

Free defined application dataArray of 18 FloatsAppData

<RobData Id="111" Ts="1.202" >

<RobMode>Auto</RobMode>

<Ts_act>1.200</Ts_act>

<P_act X="1620.0" Y="1620.0" Z="1620.0" Rx="100.0" Ry="100.0"
Rz="100.0" />

<J_act J1="1.0" J2="1.0" J3="1.0" J4="1.0" J5="1.0" J6="1.0" />

<Ts_des>1.200</Ts_des>

<P_des X="1620.0" Y="1620.0" Z="1620.0" Rx="100.0" Ry="100.0"
Rz="100.0" />

<J_des J1="1.0" J2="1.0" J3="1.0" J4="1.0" J5="1.0" J6="1.0" />

<AppData X1="1" X2="1620.000" X3="1620.000" X4="1620.000"
X5="1620.000" X6="1620.000" X7="1620.000" X8="1620.000"
X9="1620.000" X10="1620.000" X11="1620.000" X12="1620.000"
X13="1620.000" X14="1620.000" X15="1620.000" X16="1620.000"
X17="1620.000" X18="1620.000" />

</RobData>

Message received from robot controller
The time unit is seconds (float).

DescriptionData typeName

Last received data message ID. This ID
must correspond to the ID sent from the
robot controller.

IntegerId

Time stampFloatTs

Error messageStringEStr

Continues on next page
374 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.4.2 Example configuration
Continued

DescriptionData typeName

Free defined application dataArray of 18 floatsAppData

The corresponding XML message on the network would look like this:
<SensData Id="111" Ts="1.234">

<EStr>xxxx</Estr>

<AppData X1="232.661" X2="1620.293" X3="463.932"

X4="1231.053" X5="735.874" X6="948.263" X7="2103.584"

X8="574.228" X9="65.406" X10="2372.633" X11="20.475"

X12="96.729" X13="884.382" X14="927.954" X15="748.294"

X16="3285.574" X17="583.293" X18="684.338" />

</SensData>

Application manual - Controller software IRC5 375
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.4.2 Example configuration

Continued

9.3.5 RAPID components

About the RAPID components
This is an overview of all instructions, functions, and data types in Robot Reference
Interface.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types.

Instructions

DescriptionInstructions

Sensor Interface ConnectSiConnect

Sensor Interface CloseSiClose

Sensor Interface Get CyclicSiGetCyclic

Sensor Interface Set CyclicSiSetCyclic

Functions
Robot Reference Interface includes no functions.

Data types

DescriptionData types

External device descriptorsensor

Communication state of the devicesensorstate

376 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.3.5 RAPID components

9.4 Auto Acknowledge Input

Description
The RobotWare base functionalityAuto Acknowledge Input is an option that enables
a system input which will acknowledge the dialog presented on the FlexPendant
when switching the operator mode from manual to auto with the key switch on the
robot controller.

WARNING

Note that using such an input will be contrary to the regulations in the safety
standard ISO 10218-1 chapter 5.3.5 Single point of control with following text:
"The robot control system shall be designed and constructed so that when the
robot is placed under local pendant control or other teaching device control,
initiation of robot motion or change of local control selection from any other
source shall be prevented."
Thus it is absolutely necessary to use other means of safety to maintain the
requirements of the standard and the machinery directive and also to make a
risk assessment of the completed cell. Such additional arrangements and risk
assessment is the responsibility of the system integrator and the system must
not be put into service until these actions have been completed.

Remote control of operating mode
For information about using the safety module and a PLC for remote control of
operating mode, see Application manual - Functional safety and SafeMove2.

Limitations
The system parameter cannot be defined using the FlexPendant or RobotStudio,
only with a text string in the I/O configuration file.

Activate Auto Acknowledge Input
The robot system must be installed with the option Auto Acknowledge Input using
the Modify Installation function.
Use the following procedure to activate the system input for Auto Acknowledge
Input.

Action

Save a copy of the I/O configuration file, eio.cfg, using the FlexPendant or RobotStudio.1

Edit the I/O configuration file, eio.cfg, using a text editor. Add the following line in the
group SYSSIG_IN:

-Signal "my_signal_name" -Action "AckAutoMode"

2

my_signal_name is the name of the configured digital input signal that should be
used as the system input.

Save the file and reload it to the controller.3

Restart the system to activate the signal.4

Application manual - Controller software IRC5 377
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

9 Engineering tools
9.4 Auto Acknowledge Input

This page is intentionally left blank

10 Tool control options
10.1 Servo Tool Change [630-1]

10.1.1 Overview

Purpose
The purpose of Servo Tool Change is to be able to change tools online.
With the option Servo Tool Change it is possible to disconnect the cables to the
motor of an additional axis and connect them to the motor of another additional
axis. This can be done on the run, in production.
This option is designed with servo tools in mind, but can be used for any type of
additional axes.
Examples of advantages are:

• One robot can handle several tools.
• Less equipment is needed since one drive-measurement system is shared

by several tools.

What is included
The RobotWare option Servo Tool Change enables:

• changing tool online
• up to 8 different servo tools to change between.

Note that the option Servo Tool Change only provides the software functionality.
Hardware, such as a tool changer is not included.

Basic approach
This is the general approach for using Servo Tool Change. For a more detailed
description of how this is done, see Tool change procedure on page 385.

1 Deactivate the first tool.
2 Disconnect the first tool from the cables.
3 Connect the second tool to the cables.
4 Activate the second tool.

Application manual - Controller software IRC5 379
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.1 Overview

10.1.2 Requirements and limitations

Additional axes
To use Servo Motor Control, you must have the option Additional Axes. All additional
axes used by servo motor control must be configured according to the instructions
in Application manual - Additional axes and standalone controller.

Tool changer
To be able to change tools in production with a plug-in mechanism, a mechanical
tool changer interface is required.

en0300000549

All cables are connected to the tool changer. The tool changer interface includes
connections for signals, power, air, water, or whatever needs to be transmitted to
and from the tool.

Up to 8 tools
Up to 8 additional axes (servo tools or other axes) can be installed simultaneously
in one robot controller. Some of them (or all) may be servo tools sharing a tool
changer.

Moving deactivated tool
The controller remembers the position of a deactivated tool. When the tool is
reconnected and activated this position is used.
If the servo tool axis is moved during deactivation, the position of the axis might
be wrong after activation, and this will not be detected by the controller.

Continues on next page
380 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.2 Requirements and limitations

The position after activation will be correct if the axis has not been moved, or if
the movement is less than 0.5 motor revolutions.

Tip

If you have the Spot Servo option you can use tool change calibration.
After a tool is activated, use the instruction STCalib to calibrate the tool. This
will adjust any positional error caused by tool movements during deactivation.

Activating wrong tool
It is important to only activate a mechanical unit that is connected.
An activation of the wrong mechanical unit may cause unexpected movements or
errors. The same errors occur if a tool is activated when no tool at all is connected.

Tip

A connection relay can be configured so that activation of a mechanical unit is
only allowed when it is connected. See Connection relay on page 383.

Application manual - Controller software IRC5 381
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.2 Requirements and limitations

Continued

10.1.3 Configuration

Configuration overview
The option Servo Tool Change allows configuration of several tools for the same
additional axis.
One individual set of parameters is installed for each gun tool.

How to configure each tool
Each tool is configured the same way as if it was the only tool. For information on
how to do this, seeApplicationmanual - Additional axes and standalone controller.
The parameter Deactivate PTC superv. at disconnect, in the type Mechanical Unit,
must be set to Yes.
The parameter Disconnect at Deactivate, in the type Measurement Channel, must
be set to Yes.
The parameter Logical Axis, in the type Joint, can be set to the same number for
several tools. Since the tools are never used at the same time, the tools are allowed
to use the same logical axis.
The parameter allow_activation_from_any_motion_task, in the type Mechanical
Unit, must be set for the specific servo gun. The servo gun .cfg files are created
by the servo gun manufacturer.
For a detailed description of the respective parameter, see Technical reference
manual - System parameters.

382 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.3 Configuration

10.1.4 Connection relay

Overview
To make sure a disconnected mechanical unit is not activated, a connection relay
can be used. A connection relay can prevent a mechanical unit from being activated
unless a specified digital signal is set.
Some tool changers support I/O signals that specify which gun is currently
connected. Then a digital input signal from the tool changer is used by the
connection relay.
If the tool changer does not support I/O signals, a similar behavior can be created
with RAPID instructions. Set a digital output signal to 1 with the instruction SetDO

each time the tool is connected, and set the signal to 0 when the tool is
disconnected.

System parameters
This is a brief description of each parameter used to configure a connection relay.
For more information, see Technical reference manual - System parameters.
The following parameters have to be set for the type Mechanical Unit in the topic
Motion:

DescriptionParameter

The name of the relay to use.Use Connection
Relay Corresponds to the name specified in the parameter Name in the type

Relay.

The following parameters must be set for the type Relay in the topic Motion:

DescriptionParameter

Name of the relay.Name
Used by the parameter Use Connection Relay in the type Mechanical Unit.

The name of the digital signal used to indicate if it should be possible to
activate the mechanical unit.

Input Signal

Example of connection relay configuration
This is an example of how to configure connection relays for two gun tools. gun1
can only be activated when signal di1 is 1, and gun2 can only be activated when
di2 is 1.
If the tool changer sets di1 to 1 only when gun1 is connected, and di2 to 1 only
when gun2 is connected, there is no risk of activating the wrong gun.
The following parameter values are set for gun1 and gun2 in the type Mechanical
Unit:

Use Connection RelayName

gun1_relaygun1

gun2_relaygun2

Continues on next page
Application manual - Controller software IRC5 383
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.4 Connection relay

The following parameter values are set for gun1 and gun2 in the type Relay:

Input SignalName

di1gun1_relay

di2gun2_relay

384 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.4 Connection relay
Continued

10.1.5 Tool change procedure

How to change tool
This is a description of how to change from gun1 to gun2.

ActionStep

Deactivate gun1 with the instruction:1
DeactUnit gun1;

Disconnect gun1 from the tool changer.2

Connect gun2 to the tool changer.3

Activate gun2 with the instruction:4
ActUnit gun2;

Optional but recommended:5
Calibrate gun2 with the instruction:
STCalib gun1 \ToolChg;

Note that this calibration requires option Servo Tool Control or Spot Servo.

Application manual - Controller software IRC5 385
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.5 Tool change procedure

10.1.6 Jogging servo tools with activation disabled

Overview
Only one of the servo tools used by the tool changer may be activated at a time,
the others are set to activation disabled. This is to make sure that the user is jogging
the servo tool presently connected with right configuration.

What to do when Activation disabled appears
Follow these steps when you need to jog a servo tool but cannot activate the unit
because activation is disabled.

ActionStep

Make sure that the right servo tool is mounted on the tool changer. If the wrong
tool is mounted, see Tool change procedure on page 385.

1.

If no tool is activated, open the RAPID execution and activate the right tool.2.

If the right tool is mounted on the tool changer, deactivate the wrong tool and ac-
tivate the right tool from RAPID execution.

3.

386 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.1.6 Jogging servo tools with activation disabled

10.2 Tool Control [1180-1]

10.2.1 Overview

Purpose
Tool Control can be used to control a servo tool, for example in a spot weld or
Servo Gripper Application. Tool Control makes it possible to close the tool to a
specific plate thickness and force, and maintain the force during the process until
the tool is requested to be opened.

What is included
Tool Control gives you access to:

• RAPID instructions to open, close and calibrate servo tools
• RAPID instructions for tuning system parameter values
• RAPID functions for checking status of servo tools
• system parameters to configure servo tools

Basic approach
This is the general approach for using Tool Control.

1 Configure and calibrate the servo tool.
2 Perform a force calibration.
3 Create the RAPID program.

Prerequisites
A servo tool is an additional axis. Required hardware, such as drive module and
measurement board, is specified in Application manual - Additional axes and
standalone controller.

Application manual - Controller software IRC5 387
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.1 Overview

10.2.2 Servo tool movements

Closing and opening of a servo tool
The servo tool can be closed to a predefined thickness and tool force. When the
tool reaches the programmed contact position, the movement is stopped and there
is an immediate switch from position control mode to force control mode. In the
force control mode a motor torque will be applied to achieve the desired tool force.
The force remains constant until an opening is ordered. Opening of the tool will
reduce the tool force to zero and move the tool arm back to the pre-close position.

Synchronous and asynchronous movements
Normally a servo tool axis is moved synchronous with the robot movements in
such a way that both movements will be completed exactly at the same time.
However the servo tool may be closed asynchronously (independent of current
robot movement). The closing will immediately start to run the tool arm to the
expected contact position (thickness). The closing movement will interrupt an
on-going synchronous movement of the tool arm.
The tool opening may also take place while the robot is moving. But it is not possible
if the robot movement includes a synchronized movement of the servo tool axis.
A motion error, "tool opening could not synchronize with robot movement", will
occur.

388 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.2 Servo tool movements

10.2.3 Tip management

About tip management

Note

This is not needed when controlling a gripper.

The tip management functionality will find and calibrate the contact position of the
tool tips automatically. It will also update and monitor the total tip wear of the tool
tips.
The tips can be calibrated using the RAPID instruction STCalib (see Instructions
on page 392). Typically, two tool closings will be performed during a calibration.
Three different types of calibrations are supported: tip wear, tip change and tool
change. All three will calibrate the contact position of the tips. The total tip wear
will, however, be updated differently by these methods.

Tip wear calibration
As the tips are worn down, for example when spot welding, they need to be dressed.
After the tip dressing, a tip wear calibration is required. The tool contact position
is calibrated and the total tip wear of the tool is updated. The calibration movements
are fast and the switch to force control mode will take place at the zero position.
This method must only be used to make small position adjustments (< 3 mm)
caused by tip wear/tip dressing.

Tip

A variable in your RAPID program can keep track of the tip wear and inform you
when the tips needs to be replaced.

Tip change calibration
The tip change calibration is to be used after mounting a new pair of tips, for
example when spot welding. The tool contact position is calibrated and the total
tip wear of the tool is reset. The first calibration movement is slow in order to find
the unknown contact position and switch to force control. The second calibration
movement is fast. This calibration method will handle big position adjustments of
the servo tool.
This calibration may be followed by a tool closing in order to squeeze the tips in
place. A new tip change calibration is then done to update possible position
differences after the tip squeeze.

Tool change calibration
The tool change calibration is to be used after reconnecting and activating a servo
tool. The tool contact position is calibrated and the total tip wear of the tool remains
unchanged. The first calibration movement is slow in order to find the unknown
tip collision position and switch to force control. The second calibration movement
is fast. This calibration method will handle big position adjustments of the tool.

Continues on next page
Application manual - Controller software IRC5 389
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.3 Tip management

The method should always be used after reconnecting a tool since the activation
will restore the latest known position of the tool, and that position may be different
from the actual tool position; the tool arm may have been moved when
disconnected. This calibration method will handle big position adjustments of the
tool.

Tip

Tool change calibration is most commonly used together with the RobotWare
option Servo Tool Change.

390 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.3 Tip management
Continued

10.2.4 Supervision

Max and min stroke
An out of range supervision will stop the movement if the tool is reaching max
stroke or if it is closed to contact with the tips (reaching min stroke). See Upper
Joint Bound and Lower Joint Bound in Arm on page 395.

Motion supervision
During the position control phase of the closing/opening, motion supervision is
active for the servo tool to detect if the arm collides or gets stuck. A collision will
cause a motion error and the motion will be stopped.
During the force control phase, the motion supervision will supervise the tool arm
position not to exceed a certain distance from the expected contact position. See
parameter Max Force Control Position Error in Supervision Type on page 396.

Maximum torque
There is a maximum motor torque for the servo tool that never will be exceeded
in order to protect the tool from damage. If the force is programmed out of range
according to the tools force-torque table, the output force will be limited to this
maximum allowed motor torque and a motion warning will be logged. See parameter
Max Force Control Motor Torque in SG Process on page 393.

Speed limit
During the force control phase there is a speed limitation. The speed limitation will
give a controlled behavior of the tool even if the force control starts before the tool
is completely closed. See Speed limit 1- 6 in Force Master Control on page 394.

Application manual - Controller software IRC5 391
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.4 Supervision

10.2.5 RAPID components

About the RAPID components
This is an overview of all instructions, functions, and data types in Tool Control.
For more information, see Technical reference manual - RAPID Instructions,
Functions and Data types.

Instructions

DescriptionInstruction

Close the servo tool with a predefined force and thickness.STClose

Open the servo tool.STOpen

Calibrate the servo tool.

Note

This is normally not needed when controlling a gripper.

STCalib

An argument determines which type of calibration will be performed:
• \ToolChg for tool change calibration
• \TipChg for tip change calibration
• \TipWear for tip wear calibration

Tune motion parameters for the servo tool. A temporary value can be
set for a parameter specified in the instruction.

STTune

Reset tuned motion parameters for the servo tool. Cancel the effect of
all STTune instructions.

STTuneReset

Functions

DescriptionFunction

Test if the servo tool is closed.STIsClosed

Test if the servo tool is open.STIsOpen

Tests if a servo tool is calibrated.STIsCalib

Calculate the motor torque for a servo tool.STCalcTorque

Calculate the force for a servo tool.STCalcForce

Tests if a mechanical unit is a servo tool.STIsServoTool

Tests if servo tool is in independent mode.STIsIndGun

Data types
Tool Control includes no RAPID data types.

392 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.5 RAPID components

10.2.6 System parameters

About the system parameters
When using a servo tool, a motion parameter file for the tool is normally installed
on the controller. A servo tool is a specific variant of an additional axis and the
description of how to configure the servo tool is found in Application
manual - Additional axes and standalone controller.
In this section, the parameters used in combination with Tool Control is briefly
described. For more information, see the respective parameter in Technical
reference manual - System parameters.

SG Process
These parameters belong to the type SG Process in the topic Motion.
SG Process is used to configure the behavior of a servo gun (or other servo tool,
such as a gripper).
For gripper control, most of these parameters can be set to default values from
the template files.

DescriptionParameter

Adjustment of the ordered minimum close time of the gun.Close Time Adjust

Adjustment of the ordered position (plate thickness) where force
control should start, when closing the gun.

Close Position Adjust

Delays the close ready event after achieving the ordered force.Force Ready Delay

Max allowed motor torque for force control. Commanded force will
be reduced, if the required motor torque is higher than this value.

Max Force Control
Motor Torque

Anticipation of the open ready event. This can be used to synchron-
ize the gun opening with the next robot movement.

Post-synchronization
Time

Defines the number of times the servo gun closes during a tip wear
calibration.

Calibration Mode

The minimum tip force used during a tip wear calibration.Calibration Force Low

The maximum tip force used during a tip wear calibration.Calibration ForceHigh

The time that the servo gun waits in closed position during calibra-
tion.

Calibration Time

Defines the number of points in the force-torque relation specified
in Tip Force 1 - 10 and Motor Torque 1 - 10.

Number of Stored
Forces

Tip Force 1 defines the tip force that corresponds to the motor torque
in Motor Torque 1.

Tip Force 1 - 10

Tip Force 2 corresponds to Motor Torque 2, etc.

Motor Torque 1 defines the motor torque that corresponds to the
tip force in Tip Force 1.

Motor Torque 1- 10

Motor Torque 2 corresponds to Tip Force 2, etc.

Defines the joint position at each force level in the force calibration
table.

Squeeze Position 1 -
10

Defines how long the force will be maintained if a soft stop occurs
during constant force.

Soft Stop Timeout

Continues on next page
Application manual - Controller software IRC5 393
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters

DescriptionParameter

This parameter should only be used for gripper control.Automatic Open Dis-
abled Keeps the gripper closed even during and after a stop. The gripper

can only be opened by the STOpen instruction.

This parameter should normally only be used for gripper control.Sync Check Off
Makes it possible to run the gripper without the STCalib instructions
that otherwise are needed.

Force Master
These parameters belong to the type Force Master in the topic Motion.
Force Master is used to define how a servo tool, typically a servo gun, behaves
during force control. The parameters only affect the servo tool when it is in force
control mode.

DescriptionParameter

The frequency limit for the low pass filter for reference values.References Bandwidth

Determines if the ramping of the tip force should use a constant
time or a constant gradient.

Use ramp time

Determines how fast force is built up while closing the tool when
Use ramp time is set to No.

Ramp when Increase
Force

Determines how fast force is built up while closing the tool when
Use ramp time is set to Yes.

Ramp time

Frequency limit for the low pass filter used for tip wear calibration.Collision LP Bandwidth

Determines how hard the tool tips will be pressed together during
the first gun closing of new tips calibrations and tool change cal-
ibrations.

Collision Alarm Torque

Determines the servo gun speed during the first gun closing of
new tips calibrations and tool change calibrations.

Collision Speed

Defines the distance the servo tool has gone beyond the contact
position when the motor torque has reached the value specified
in Collision Alarm Torque.

Collision Delta Position

Determines how close to the ordered plate thickness the tool tips
must be before the force control starts.

Max pos err. closing

Delays the starting of torque ramp when force control is started.Delay ramp

Determines if the feedback position should be used instead of
reference position when deciding the contact position.

Ramp to real contact

Force Master Control
These parameters belong to the type Force Master Control in the topic Motion.
ForceMaster Control is used to set the speed limit and speed loop gain as functions
of the torque.

DescriptionParameter

The number of points used to define speed limit and speed loop gain
as functions of the torque. Up to 6 points can be defined.

No. of speed limits

The torque levels, corresponding to the ordered tip force, for which
the speed limit and speed loop gain values are defined.

torque 1 - torque 6

Speed Limit 1 to Speed Limit 6 are used to define the maximum speed
depending on the ordered tip force.

Speed Limit 1 - 6

Continues on next page
394 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters
Continued

DescriptionParameter

Kv 1 to Kv 6 are used to define the speed loop gain for reducing the
speed when the speed limit is exceeded.

Kv 1 - 6

Arm
These parameters belong to the type Arm in the topic Motion.
The type Arm defines the characteristics of an arm.

DescriptionParameter

Defines the upper limit of the working area for the joint.Upper Joint Bound

Defines the lower limit of the working area for the joint.Lower Joint Bound

Acceleration Data
These parameters belong to the type Acceleration Data in the topic Motion.
Acceleration Data is used to specify some acceleration characteristics for axes
without any dynamic model.

DescriptionParameter

Worst case motor acceleration.Nominal Acceleration

Worst case motor deceleration.Nominal Deceleration

Indicates how fast the acceleration can be increased.Acceleration Derivate Ratio

Indicates how fast the deceleration can be increased.Deceleration Derivate Ratio

Motor Type
These parameters belong to the type Motor Type in the topic Motion.
Motor Type is used to describe characteristics for a motor.

DescriptionParameter

Defines the number of pole pairs for the motor.Pole Pairs

The inertia of the motor, including the resolver but excluding the
brake.

Inertia

The continuous stall torque, i.e. the torque the motor can produce at
no speed and during an infinite time.

Stall Torque

Nominal voltage constant. The induced voltage (phase to phase) that
corresponds to the speed 1 rad/s.

ke Phase to Phase

Max current without irreversible magnetization.Max Current

Nominal winding resistance per phase at 20 degrees Celsius.Phase Resistance

Nominal winding inductance per phase at zero current.Phase Inductance

Motor Calibration
These parameters belong to the type Motor Calibration in the topic Motion.
Motor Calibration is used to calibrate a motor.

DescriptionParameter

Defines the position of the motor (resolver) when the rotor is in the
electrical zero position relative to the stator.

Commutator Offset

Continues on next page
Application manual - Controller software IRC5 395
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters

Continued

DescriptionParameter

Defines the position of the motor (resolver) when it is in the calibration
position.

Calibration Offset

Stress Duty Cycle
These parameters belong to the type Stress Duty Cycle in the topic Motion.
Stress Duty Cycle is used for protecting axes, gearboxes, etc.

DescriptionParameter

The absolute highest motor speed to be used.Speed Absolute Max

The absolute highest motor torque to be used.Torque Absolute Max

Supervision Type
These parameters belong to the type Supervision Type in the topic Motion.
Supervision Type is used for continuos supervision of position, speed and torque.

DescriptionParameter

When a servo gun is in force control mode it is not allowed to move
more than the distance specified in Max Force Control Position Error.
This supervision will protect the tool if, for instance, one tip is lost.

Max Force Control
Position Error

Speed error factor during force control.Max Force Control
Speed Limit If the speed limits, defined in the type Force Master Control, multiplied

with Max Force Control Speed Limit is exceeded, all movement is
stopped.

Transmission
These parameters belong to the type Transmission in the topic Motion.
Transmission is used to define the transmission gear ratio between a motor and
its axis.

DescriptionParameter

Defines if the axis is rotating or linear.Rotating Move

Defines the transmission gear ratio between motor and joint.Transmission Gear Ratio

Lag Control Master 0
These parameters belong to the type Lag Control Master 0 in the topic Motion.
Lag Control Master 0 is used for regulation of axes without any dynamic model.

DescriptionParameter

Defines if the position regulation should use feed forward of speed
and torque values.

FFW Mode

Proportional gain in the position regulation loop.Kp, Gain Position Loop

Proportional gain in the speed regulation loop.Kv, Gain Speed Loop

Integration time in the speed regulation loop.Ti Integration Time
Speed Loop

Continues on next page
396 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters
Continued

Uncalibrated Control Master 0
These parameters belong to the type Uncalibrated Control Master 0 in the topic
Motion.
Uncalibrated Control Master 0 is used to regulate uncalibrated axes.

DescriptionParameter

Proportional gain in the position regulation loop.Kp, Gain Position Loop

Proportional gain in the speed regulation loop.Kv, Gain Speed Loop

Integration time in the speed regulation loop.Ti Integration Time Speed Loop

The maximum allowed speed for an uncalibrated axis.Speed Max Uncalibrated

The maximum allowed acceleration for an uncalibrated
axis.

Acceleration Max Uncalibrated

The maximum allowed deceleration for an uncalibrated
axis.

Deceleration Max Uncalibrated

Application manual - Controller software IRC5 397
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.6 System parameters

Continued

10.2.7 Commissioning and service

Commissioning the servo tool
For a new servo tool, follow these steps for installing and commissioning:

ActionStep

Install the servo tool according to the description in Application manual - Additional
axes and standalone controller.

1

Load a .cfg file with the servo tool configuration. For detailed description on how
to do this, see Operating manual - RobotStudio.

2

If you do not have any .cfg file for the servo tool, you can load a template file and
configure the system parameters with the values of your servo tool. Template files
are found in the RobotWare distribution, see Template file locations on page 398.

Use the RAPID instruction STTune and iterate to find the optimal parameter values.
Once found, these optimal values should be written to the system parameters to
be permanent.

3

Fine calibrate the servo tool, see Fine calibration on page 400.4

Unless force calibration was included in a loaded .cfg file, perform a force calibra-
tion.

5

Template file locations
The template files can be obtained from the PC or the IRC5 controller.

• In the RobotWare installation folder in RobotStudio: ...\RobotPackages\
RobotWare_RPK_<version>\utility\AdditionalAxis\

• On the IRC5 Controller:
<SystemName>\PRODUCTS\<RobotWare_xx.xx.xxxx>\utility\AdditionalAxis\

Note

Navigate to the RobotWare installation folder from the RobotStudio Add-Ins tab,
by right-clicking on the installed RobotWare version in the Add-Ins browser and
selecting Open Package Folder.

Disconnect/reconnect a servo tool
If the servo tool is deactivated, using the DeactUnit instruction, it may be
disconnected and removed. The tool position at deactivation will be restored when
the tool is connected and reactivated. Make a tool change calibration to make sure
the tip position is OK.
The whole process of changing a tool can be performed by a RAPID program if
you use the RobotWare option Servo Tool Change and the instruction STCalib.

Recover from accidental disconnection
If the motor cables are disconnected by accident when the servo tool is active, the
system will go into system failure state. After restart of the system the servo tool
must be deactivated in order to jog the robot to a service position.
Deactivation may be performed from the Joggingwindow. Tap onActivate..., select
the servo tool and tap on Deactivate.

Continues on next page
398 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.7 Commissioning and service

After service / repair the revolution counter must be updated since the position
has been lost, see Update revolution counter on page 400.

Application manual - Controller software IRC5 399
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.7 Commissioning and service

Continued

10.2.8 Mechanical unit calibrations

Fine calibration
Fine calibration must be performed when installing a new servo tool, or if the servo
tool axis is in state ‘Not Calibrated’.
For a gripper, it is sufficient with a normal calibration at a position where the fingers
are touching, but are not squeezed together. In this case, STCalib instructions
are not needed.
For this, it is recommended to create a service routine using the following
instructions:

STCalib "ToolName" \TipChg;

STCalib "ToolName" \TipWear;

Update revolution counter
An update of the revolution counter must be performed if the position of the axis
is lost. If this happens, this is indicated by the calibration state ‘Rev. Counter not
updated’.
For this, it is recommended to use the same service routine as for the fine
calibration.

400 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.8 Mechanical unit calibrations

10.2.9 RAPID code example

How to use the code package
The normal programming technique for Tool Control is to customize shell routines
based on the example code below. These shell routines are then called from your
program.

Using shell routines
This example shows a main routine in combination with a customized routine
(rMoveSpot) that uses the standard servo tool instructions. The external process
(for example a weld timer) is indicated with the routine rWeld.

PROC main()

MoveJ p1, v500, z50, weldtool;

MoveL p2, v1000, z50, weldtool;

! Perform weld process

rMoveSpot weldpos1, v2000, curr_gun_name, 1000, 2, 1,

weldtool\WObj:=weldwobj;

rMoveSpot weldpos2, v2000, curr_gun_name, 1000, 2, 1,

weldtool\WObj:=weldwobj;

rMoveSpot weldpos3, v2000, curr_gun_name, 1500, 3, 1,

weldtool\WObj:=weldwobj;

MoveL p3, v1000, z50, weldtool;

ENDPROC

PROC rMoveSpot (robtarget ToPoint,

speeddata Speed,

gunname Gun,

num Force,

num Thickness,

PERS tooldata Tool

\PERS wobjdata WObj)

! Move the gun to weld position.

! Always use FINE point to prevent too early closing.

MoveL ToPoint, Speed, FINE, weldtool \WOIbj=WObj;

STClose Gun, Thickness;

rWeld;

STOpen Gun;

ENDPROC

PROC rWeld()

! Request weld start from weld timer

SetDO doWeldstart,1;

! Wait until weld is performed

WaitDI diWeldready,1;

SetDO doWeldstart,0;

ENDPROC

Application manual - Controller software IRC5 401
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.9 RAPID code example

10.2.10 Using tool control for gripper applications

Templates
There are no specific template files for grippers, but the Servo Gun files can be
used as a foundation.

Parameters
When using the tool for gripper application, there are two key parameters that must
be set. These parameters belong to the type SG Process in the topic Motion:

• Automatic Open Disabled keeps the gripper closed even during and after a
stop. The gripper can only be opened by the STOpen instruction.

• Sync Check Off makes it possible to run the gripper without the STCalib

instructions that otherwise are needed.

Instructions and positions
When using the tool control for gripper applications, the definition of zero position
is when the fingers are closed.

A B C D

xx2000000214

Zero positionA

Example: STIndGun grip1,30B

Example: STClose grip1,1000,5C

Example: STClose grip1,-1000,20D

Continues on next page
402 Application manual - Controller software IRC5

3HAC050798-001 Revision: V
© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.10 Using tool control for gripper applications

STIndGun instructions can be used to move the gripper independent of the normal
movement instructions.

xx0500002342

If the gripper should squeeze in the opposite direction, the sign of the force should
be negative.

Application manual - Controller software IRC5 403
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.2.10 Using tool control for gripper applications

Continued

10.3 I/O Controlled Axes [included in 1180-1]

10.3.1 Overview

Purpose
The purpose of I/O Controlled Axes is to control an axis from the robot controller
by using an I/O interface instead of having the axis integrated into the IRC5 drive
system.
For operation and programming, an I/O controlled axis acts just like an integrated
process axis. The difference is that the drive unit of the I/O controlled axis is not
directly connected to the drive system of the robot controller. The motion
configuration provides an I/O interface, which connects the robot controller to an
external servo regulator.
The robot controller can take and release control of the additional axis during
program execution. The additional axis can be moved synchronously to the robot
(while controlled by the robot controller) or independently of the robot (while
controlled by an external PLC).
Some examples of applications are:

• Servo guns
• Grippers

What is included
The RobotWare option I/O Controlled Axes gives you access to system parameters
for configuring I/O controlled axes.

Basic approach
This is the general approach for setting up I/O Controlled Axes.

1 Configure the system parameters for the axis to be controlled via I/O. See
Configuration on page 409.

2 Operate the axis (jog, program etc.) just like any additional axis. See RAPID
programming on page 413.
For additional axis in general, also see Operating manual - IRC5 with
FlexPendant and Application manual - Additional axes and standalone
controller.

404 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.1 Overview

10.3.2 Contouring error

What is a contouring error
A contouring error is generated if an I/O controlled axis on the programmed robot
path of the robtarget is not reached based on the bus delay and acceleration. If
this event occurs, the robot’s movement stops on the path. An error entry is made
in the error log.
Possible causes for the occurrence of a contouring error:

• Robot collisions
• An external axis that is difficult to move or faulty
• Incorrect value of system parameter Bus delay time in ms

Error handling
1 Error – acknowledgement at the external process unit.

For that, each application needs to provide a reset button. The process unit
needs to be ready before the program can be started.

2 Motors On / Program start
If automatic movement back to path is allowed, the robot will move back
automatically to path before the program continues with the instruction that
was canceled. In case automatic movement is not allowed, a error message
occurs. A selection menu provides possibilities to accept the movement or
to cancel the start event.
In case the start event is canceled, the operator needs to change the operation
mode to manual.
Now the operator can specify a further procedure before the robot program
can be restarted. For example:

• move the robot manual out of collision area
• move to a previous move instruction

For more information, see topic Controller, type Path Return Region in Technical
reference manual - System parameters.

Application manual - Controller software IRC5 405
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.2 Contouring error

10.3.3 Correcting the position

Correcting the position
Correcting (teaching) a robot position (robtarget) is done using the buttonModify
Position in the program editor (as for the robot axes).
For the following states, the modified position of the I/O controlled axis will not be
the current position, but the last valid feedback position:

• Axis is not referenced
• Servo regulator is not operative
• Actual position of the I/O interface invalid
• Position is outside the operating range

The position correction is adopted for activated axes only. If an available axis is
not activated, this axis is ignored. This means the robtarget substitute symbol
for the axis in question remains unchanged. This state does not lead to an error.

406 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.3 Correcting the position

10.3.4 Tool changing

Tool changing
If a tool is deactivated with the instruction DeactUnit, it is necessary to set the
signal unit disable. When the tool is disabled (can be verified with signal
unit_disabled), it is possible to disconnect the power supply to the tool, for example
undock a spotwelding gun.
It is possible to configure the same logical axis number for different tools, but this
requires the RobotWare option Servo Tool Change.

Application manual - Controller software IRC5 407
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.4 Tool changing

10.3.5 Installation

Installation
After installation of the robot system, the I/O controlled axes needs to be loaded
in the system parameters.
Each required axis needs to be loaded separately. The specific motion file includes
default motion parameters. Parameterization and adjustments of the loaded axis
is described in more detail in Configuration on page 409.

408 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.5 Installation

10.3.6 Configuration

Template configuration files
Template configuration files are available for setting up the I/O controlled axes.
The files can be loaded to the controller, using RobotStudio or the FlexPendant,
to facilitate and speed up the configuration.
The template configuration files can be obtained from RobotStudio or the IRC5
controller.

• In the RobotWare installation folder in RobotStudio: ...\RobotPackages\
RobotWare_RPK_<version>\utility\ioctrlaxis\

• On the IRC5 Controller: <SystemName>\PRODUCTS\
<RobotWare_xx.xx.xxxx>\utility\ioctrlaxis\

Note

Navigate to the RobotWare installation folder from the RobotStudio Add-Ins tab,
by right-clicking on the installed RobotWare version in the Add-Ins browser and
selecting Open Package Folder.

Adding the I/O controlled axis
Loading the template configuration files for I/O controlled axis will install a
mechanical unit called EXTCTL1 with default signal names defined in the type
External Control Process Data, topic Motion.

1 Load one of the template motion configuration files for axis 1, select between
logical axis number 7, 8, or 9.
(ioctrl1_mn7_l7_moc.cfg, ioctrl1_mn7_l8_moc.cfg, ioctrl1_mn7_l9_moc.cfg)

2 Load one of the template I/O configuration files depending on the industrial
network.
(ioctrl1_eio.cfg, ioctrl1_pnet_eio.cfg)

3 Edit the I/O configuration and change from virtual signals to real signals
according to the current setup.

Mandatory settings for the I/O controlled axis
The following configuration must be done with data for the mechanical unit that
should be used as an I/O controlled axis.

1 In type Transmission, set Transmission Gear Ratio. See Type Transmission
on page 412.

2 In type Acceleration Data, set Nominal Acceleration, Nominal Deceleration,
Acceleration Derivate Ratio and Deceleration Derivate Ratio. See Type
Acceleration Data on page 411.

3 In type Arm, set Upper Joint Bound and Lower Joint Bound. See Type Arm
on page 412.

4 In type Stress Duty Cycle, set Speed Absolute Max. See Type Stress Duty
Cycle on page 412.

Continues on next page
Application manual - Controller software IRC5 409
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.6 Configuration

5 In typeSupervision Type, set static_position_limit and dynamic_position_limit.
See Type Supervision Type on page 412.

6 In type External Control Process Data, set Bus delay time in ms. See Type
External Control Process Data on page 411.

Optional customization settings
If other values than the default values are preferred, any of the following settings
can be changed.

• To change the logical axis number, change the value for Logical Axis. See
Type Joint on page 412.

• To change the names of the signals used to communicate with the I/O
controlled axis, change the settings in the type External Control Process
Data, see Type External Control Process Data on page 411.

• To use an activation relay, set the parameter Use Activation Relay. See Type
Mechanical Unit on page 412.

Adding another axis
For a second or third I/O controlled axis, EXTCTL2 and EXTCTL3, the corresponding
configuration files must be loaded from the template folder.

1 Load one of the template configuration files for axis 2 or 3.
2 Make the same configurations as for the first I/O controlled axis.

Note

Several mechanical units may use the same logical axis number, but this requires
the RobotWare option Servo Tool Change.

Settings for PROFINET
If a PROFINET bus is used, the parameter Reduction ratio should be set to 4 ms
or 2 ms for the I/O controlled unit. See Application manual - PROFINET
Controller/Device.

410 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.6 Configuration
Continued

10.3.7 System parameters

About the system parameters
This is a brief description of each parameter in the option I/O Controlled Axes. For
more information, see the respective parameter in Technical reference
manual - System parameters.

Type External Control Process Data
These parameters belongs to the type External Control Process Data in the topic
Motion.

DescriptionParameter

Parameter for bus delay time.Bus delay time in ms

Output signal for activation of the I/O controlled unit.Regulator activation signal

Output signal for allowing external control of the unit.Ext Controller output signal

Output signal with positioning reference for the I/O con-
trolled axis.

Pos_ref output signal

Output signal with sign (+ or -) of the positioning reference
for the I/O controlled axis.

Pos_ref sign signal

Output signal that signals that the positioning reference is
a valid signal and the axis needs to follow the reference
signal.

Pos_ref valid signal

Input signal that indicates if the I/O controlled unit is en-
abled and ready.

Regulator is activated signal

Input signal that signals if the required positioning refer-
ence is out of range.

Req pos is out of range input
signal

Input signal with position feedback from the I/O controlled
axis.

Pos_fdb input signal

Input signal with with sign (+ or -) of the position feedback
from the I/O controlled axis.

Pos_fdb sign signal

Input signal that indicates that the position feedback signal
is valid.

Pos_fdb_valid signal

Input signal from I/O controlled unit indicating that it is
ready.

Unit_ready input signal

Input signal indicating that the external unit is in control
of the movement. The robot controller is not allowed to
move the external unit.

Ext Controller input signal

The program pointer does not need to be moved after the
an error.

No program pointer move after
error

Type Acceleration Data
These parameters belongs to the type Acceleration Data in the topic Motion.

DescriptionParameter

Worst case motor acceleration.Nominal Acceleration

Worst case motor deceleration.Nominal Deceleration

Defines how fast the acceleration can build up, i.e. an in-
dication of the derivative of the acceleration.

Acceleration Derivate Ratio

Continues on next page
Application manual - Controller software IRC5 411
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.7 System parameters

DescriptionParameter

Defines how fast the deceleration can build up, i.e. an in-
dication of the derivative of the deceleration.

Deceleration Derivate Ratio

Type Arm
These parameters belongs to the type Arm in the topic Motion.

DescriptionParameter

Defines the upper limit of the working area for this joint.Upper Joint Bound

Defines the lower limit of the working area for this joint.Lower Joint Bound

Type Joint
These parameters belongs to the type Joint in the topic Motion.

DescriptionParameter

Defines the axis number as seen by a RAPID program.Logical Axis
Two mechanical units can have the same value set for
Logical Axis, but then they cannot be activated at the same.

Type Mechanical Unit
These parameters belongs to the type Mechanical Unit in the topic Motion.

DescriptionParameter

Points out a relay that will be activated or deactivated when
the mechanical unit is activated or deactivated.

Use Activation Relay

Type Stress Duty Cycle
These parameters belongs to the type Stress Duty Cycle in the topic Motion.

DescriptionParameter

The absolute highest motor speed to be used in
meters/second.

Speed Absolute Max

Type Supervision Type
These parameters belongs to the type Supervision Type in the topic Motion.

DescriptionParameter

Position error limit at zero speed, in meters on motor side.static_position_limit

Position error limit (max lag) at max speed, in meters on
motor side.

dynamic_position_limit

Type Transmission
These parameters belongs to the type Transmission in the topic Motion.

DescriptionParameter

Defines the transmission gear ratio between motor and
joint. For most axis this parameter is set to 1.

Transmission Gear Ratio

412 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.7 System parameters
Continued

10.3.8 RAPID programming

Data types
This is a brief description of specific considerations regarding RAPID data types
when using I/O Controlled Axes.
General descriptions of the data types are found in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionData type

The position of the I/O controlled axis is set as an additional axis in
a robtarget.

robtarget

Example, where the I/O controlled axis is logical axis 7 and should
be moved to position 100:

p1 := [[20,50,-80], [1,0,0,0], [1,1,0,0],
[100,9E+09,9E+09,9E+09,9E+09,9E+09]];

Instructions
This is a brief description of specific considerations regarding RAPID instructions
when using I/O Controlled Axes.
General descriptions of the instructions are found in Technical reference
manual - RAPID Instructions, Functions and Data types.

DescriptionInstruction

Regular move instructions are used to move an I/O controlled axis.
The position value of the I/O controlled value is included in the
robtarget, see Data types on page 413.

MoveL
MoveC
MoveJ

The I/O controlled axis can be moved simultaneously with the robot.

RAPID example
PROC Sequence123()

...

MoveJ pHome, v1500, fine, tGun1;

ActUnit EXTCTL1;

MoveJ p100, v1000, z10, tGun1 \Wobj:=wobj1;

MoveL p101, v1000, fine, tGun1 \Wobj:=wobj1;

...

! Application-specific commands

...

MoveL p102, v1000, z10, tGun1 \Wobj:=wobj1;

MoveJ p100, v1000, fine, tGun1 \Wobj:=wobj1;

DeactUnit EXTCTL1;

MoveJ pHome, v1500, fine, tGun1;

ENDPROC

Application manual - Controller software IRC5 413
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

10 Tool control options
10.3.8 RAPID programming

This page is intentionally left blank

Index
3
3rd party software, 15

A
Absolute Accuracy, 135

MultiMove, 136
Absolute Accuracy calibration, 146
Absolute Accuracy compensation, 144
Absolute Accuracy verification, 147
Acceleration Data, 395, 409, 411
Acceleration Derivate Ratio, 395, 411
Acceleration Max Uncalibrated, 397
accidental disconnection, 398
acknowledge messages, 307
activate Absolute Accuracy, 138
Activate at start up, 233
activate supervision, 281
activation disabled, 386
actor signals, 105–106
additional axes, 387
additional axis, 65
Add or replace parameters, 196
Adjustment Speed, 231
Advanced RAPID, 23
Advanced Shape Tuning, 156
AliasIO, 30–31
alignment, 150
analog signal, 54
Analog Signal Interrupt, 54
Analog Synchronization, 181
AND, 106
Application protocol, 291, 295, 299
ArgName, 52
argument name, 52
Arm, 395, 409, 412
arm replacement, 140
asynchronous movements, 388
Auto acknowledge input, 11, 377
automatic friction tuning, 157
Automatic Open Disabled , 394
Auto mode, 334
axis, 243
axis reset, 243

B
binary communication, 89
binary data, 307
birth certificate, Absolute Accuracy, 148
BitAnd, 25
BitCheck, 25
BitClear, 25
bit functionality, 24
BitLSh, 25
BitNeg, 25
BitOr, 25
BitRSh, 25
BitSet, 25
BitXOr, 25
BookErrNo, 47
bool, 361
Bus delay time in ms, 411
byte, 25
ByteToStr, 25

C
calibrate follower axis, 72
calibrate tool, 154
calibration data, 138
Calibration Force High, 393
Calibration Force Low, 393
Calibration Mode, 393
Calibration Offset, 396
calibration process, 146
Calibration Time, 393
calibration tools, 137
CalibWare, 137
cell alignment, 150
certificate, Absolute Accuary, 148
change calibration data, 138
change of tool, Machine Synchronization, 208
channel, 365
character based communication, 89
Check unresolved references, Task type, 325
CirPathMode, 176
class, 365
ClearIOBuff, 90
ClearRawBytes, 94
Close, 90
CloseDir, 98
Close position adjust, 393
Close time adjust, 393
code example, 401
collision, 272
Collision Alarm Torque, 394
Collision Avoidance, 283
Collision Delta Position, 394
collision detection

MultiMove, 270
YuMi robots, 270

Collision Detection Memory, 275
Collision Error Handler, 276
Collision LP Bandwidth, 394
Collision Speed, 394
commissioning, 398
common data, 336
communication, 88
communication channel, 356
communication client, 363
Commutator Offset, 395
compensation, 144
compensation parameters, 135, 149
compliance errors, 143
comunication cable

connecting, 357
configuration

Absolute Accuracy, 138
configuration.xml, 367
configuration example, 371
configuration files, 362
configuration functionality, 33
configure Collision Detection, 279
configuring

sensors, 348
tasks, 328

Connected signal, 232
connection relay, 383
constants

Sensor Interface, 352
convention, 364
coordinate systems, 150

Application manual - Controller software IRC5 415
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Index

CopyFile, 98
CopyRawBytes, 94
Corr argument, 267
CorrClear, 266
CorrCon, 266
corrdescr, 266
CorrDiscon, 266
correction generator, 264
CorrRead, 266
CorrWrite, 266
Counts Per Meter, 231
CPU_load_equalization, 232
creating tasks, 328
cross connections, 105
cut plane, 174
cut shape, 179
Cyclic bool, 57
Cyclic bool settings, 63
Cyclic bool system parameters, 63

D
data, 313
data exchange, 356
datapos, 28
Data ready signal, 232
data search functionality, 27
data types

Multitasking, 327
supported, 361

data variable example
Electronically Linked Motors, 80

data variables
Electronically Linked Motors, 78

Deactivate PTC superv. at disconnect, 382
deactivate supervision, 281
deactivate tasks, 333
debugging

strategies, 328
Deceleration Derivate Ratio, 395, 412
Deceleration Max Uncalibrated, 397
declarations, 336
deflection, 144
Delay ramp, 394
description.xml, 364
digital I/O signals, 105
dir, 98
directory management, 97
discarded message, 315
Disconnect at Deactivate, 382
disconnection, 398
dispatcher, 341
displacement, 79
Do not allow deact, 233
dynamic_position_limit , 412

E
Electronically Linked Motors, 65
elements

channel, 365
class, 365
convention, 364
enum, 367
field, 368
member, 368
network, 365
property, 369
record, 368

settings, 366
type, 365

enums element, 367
errdomain, 44
error interrupts, 43
error sources in accuracy, 143
ErrRaise, 44
errtype, 44
Ethernet, 289, 293, 297
Ethernet link, 358
event messages, 46
event number, 46
Event Preset Time, 85
Event recorder, 304
Ext Controller input signal, 411
Ext Controller output signal, 411
external axes, 271
external axis, 243
External Control Process Data, 410–411

F
fake target, 144
false triggering, 282
FeedbackJoints, 359
FeedbackPose, 359
FeedbackTime, 359
FFW Mode, 396
Fieldbus Command, 231
Fieldbus Command Interface, 101
field element, 368
FIFO, 314
file communication, 88
file management, 97
FileSize, 98
file structures, 97
fine calibration, 400
finepoints, Machine Synchronization, 207
FingerPrint, 295
fixed position events, 82
fixture alignment, 151
FlexPendant, 343
follower, 65
Follower to Joint, 67
Force Master, 394
Force Master Control, 394
Force Ready Delay, 393
frame, 361
frame relationships, 153
frames, 150
FricIdEvaluate, 163
FricIdInit, 163
FricIdSetFricLevels, 163
friction compensation, 156
Friction FFW Level, 161
Friction FFW On, 161
Friction FFW Ramp, 161
friction level tuning, 157
FSSize, 98
functions

Advanced RAPID, 52
Multitasking, 327
Sensor Interface, 351

G
General RAPID, 276
GetDataVal, 28
GetMaxNumberOfCyclicBool, 64

416 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Index

GetNextCyclicBool, 64
GetNextSym, 28
GetNumberOfCyclicBool, 64
GetTrapData, 44
group I/O signals, 105
Group ID, 299

H
hydraulic press, 222

I
I/O Controlled Axes, 404
IError, 44
IIRFFP, 231
IndAMove, 246
IndCMove, 246
Ind collision stop without brake, 276
IndDMove, 246
Independent Axes, 243
independent joint, 271
Independent Joint, 245
Independent Lower Joint Bound, 245
independent movement, 243
Independent Upper Joint Bound, 245
IndInpos, 246
IndReset, 246
IndRMove, 246
IndSpeed, 246
Inertia, 395
Input Signal, 383
installation, 398
instructions

Advanced RAPID, 52
Multitasking, 327
Sensor Interface, 351

interrupt, 54, 314, 337, 351, 354
interrupt functionality, 43
iodev, 90
IPers, 44
IP protocols, 358
IRMQMessage, 318
IsCyclicBool, 64
IsFile, 98
ISignalAI, 55
ISignalAO, 55
IsStopStateEvent, 52
IVarValue, 351

J
Jog Collision Detection, 275, 279
Jog Collision Detection Level, 275
Jog Collision Detection Level, 279
joint, 361
Joint, 67, 410, 412
joint zones, 237

K
ke Phase to Phase, 395
kinematic errors, 143
Kp, Gain Position Loop, 396–397
Kv 1 - 6, 395
Kv, Gain Speed Loop, 396
Kv, Gain Speed Loop, 397

L
l_f_axis_name, 78
l_f_axis_no, 78

l_f_mecunt_n, 78
l_m_axis_no, 78
l_m_mecunt_n, 78
Lag Control Master 0, 396
licenses, 15
Linked M Process, 67
load calibration data, 138
Load Identification, 137
Local path, 291, 295, 299
Lock Joint in Ipol, 67
logical AND, 107
Logical Axis, 382, 412–413
Logical Cross Connections, 105
logical operations, 105
logical OR, 107
loss of accuracy, 142
lost message, 315
lost queue, 315
Lower Joint Bound, 395, 412
LTAPP, 350

M
Main entry, Task type, 325
maintenance, 140
MakeDir, 98
manipulator replacement, 141
Manipulator Supervision, 275
Manipulator Supervision Level, 275
manual friction tuning, 159
manual mode, Machine Synchronization, 207, 209
master, 65
Master Follower kp, 68
Max Advance Distence, 232–233
Max Current, 395
Max Delay Distance, 233
Max Follower Offset, 67
Max Force Control Motor Torque, 393
Max Force Control Position Error, 396
Max Force Control Speed Limit, 396
Max Offset Speed, 67
Max pos err. closing, 394
Max Synchronization Speed, 233
measurement system, 246
mechanical unit, 344
Mechanical Unit, 410, 412
Mechanics, 233
member element, 368
merge of messages, 307
messages

outgoing, 359
received, 374
sent, 374

Min Synchronization Speed, 233
modes of operation, Machine Synchronization, 209
modules

Sensor Interface, 351
molding machine, 226
motion commands, Machine Synchronization, 207
Motion Planner, 275
Motion Process Mode, 164
MotionSup, 277, 281
Motion Supervision, 275
Motion Supervision Max Level, 275
Motion System, 276
MotionTask, Task type, 326
Motor Calibration, 395
motor replacement, 140

Application manual - Controller software IRC5 417
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Index

Motor Torque 1- 10, 393
Motor Type, 395
MotSupOn, 278
MotSupTrigg, 278
MoveC, 413
MoveCSync, 83
MoveJ, 413
MoveJSync, 83
MoveL, 413
MoveLSync, 83
MultiMove

collision detection, 270
Multitasking, 323

N
Name, 233, 291, 295, 299
Name, Transmission Protocol type, 349–350
network, 365
NFS Client, 297
No. of speed limits, 394
Nominal Acceleration, 395, 411
Nominal Deceleration, 395, 411
Nominal Speed, 231
non printable characters, 307
No program pointer move after error, 411
NORMAL, 325
NoSafety, 325
NOT, 107
Not Calibrated, 400
Null speed signal, 232
num, 361
Number of Stored Forces, 393

O
object queue, 186
offset_ratio, 78
Offset Adjust Delay Time, 67
Offset Speed Ratio, 67
Open, 90
OpenDir, 98
open source software, OSS, 15
OperationMode, 359
OR, 106
outgoing message, 359

P
PackDNHeader, 102
PackRawBytes, 94
parameters

accuracy compensation, 149
Password, 291, 295
path, 37
Path Collision Detection, 275, 279
Path Collision Detection Level, 275, 279
path correction, 264
path offset, 264
pathrecid, 250
PathRecMoveBwd, 250
PathRecMoveFwd, 250
path recorder, 257
Path Recovery, 249
PathRecStart, 250
PathRecStop, 250
PathRecValidBwd, 250
PathRecValidFwd, 250
Path resolution, 232
PC Interface, 301

PC SDK client, 313
performance limits, Machine Synchronization, 207
persistent variables, 335
PFRestart, 37
Phase Inductance, 395
Phase Resistance, 395
pitch, 143
PlannedJoints, 360
PlannedPose, 360
Pole Pairs, 395
polling, 337
Pos_fdb_valid signal, 411
Pos_fdb input signal, 411
Pos_fdb sign signal, 411
Pos_ref output signal, 411
Pos_ref sign signal, 411
Pos_ref valid signal, 411
pose, 361
position accuracy reduction, 75
position event, 82
Position signal, 232
position warnings, Machine Synchronization, 207
Post-synchronization Time, 393
power failure functionality, 37
PredictedTime, 360
prerequisites, 358
priorities, 330
Process, 67
process support functionality, 39
Process update time, 232
programmed speed, Machine Synchronization, 207
program pointer, 52
programs

editing, 328
property element, 369
proportional signal, 40
protocols

Ethernet, 350
serial channels, 349

Q
queue handling, 314
queue name, 314

R
r1_calib, 138
Ramp time, 394
Ramp Time, 68
Ramp to real contact, 394
Ramp when Increase Force, 394
RAPID, 19
RAPID components

Advanced RAPID, 52
Multitasking, 327
Sensor Interface, 351

RAPID editor, 304
RAPID limitations, Machine Synchronization, 208
RAPID Message Queue, 312
RAPID support functionality, 51
RAPID variables, 356
rawbytes, 94
RawBytesLen, 94
raw data, 93
ReadAnyBin, 90
ReadBin, 90
ReadBlock, 351
ReadCfgData, 34

418 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Index

ReadDir, 98
ReadErrData, 44
ReadNum, 90
ReadRawBytes, 94
ReadStr, 90
ReadStrBin, 90
ReadVar, 351
real, 361
received message, 374
reconnect a servo tool, 398
record, 313
recorded path, 257
recorded profile, 222, 226
record element, 368
recover path, 249
References Bandwidth, 394
Regulator activation signal, 411
Regulator is activated signal, 411
relay, 383
Remote Address, 350
Remote Port, 350
RemoveAllCyclicBool, 64
RemoveCyclicBool, 64
RemoveDir, 98
RemoveFile, 98
RenameFile, 98
replacements, 140
Req pos is out of range input signal, 411
reset, 246
reset axis, 243
reset follower axis, 74
resolver offset calibration, 146
restartdata, 40
RestoPath, 250
resultant signal, 105–106
resume signals, 41
Rev. Counter not updated, 400
reversed movement, 272
Rewind, 90
RMQEmptyQueue, 318
RMQFindSlot, 318
RMQGetMessage, 318
RMQGetMsgData, 318
RMQGetMsgHeader, 318
RMQGetSlotName, 318
rmqheader, 318
RMQ Max Message Size, 317
RMQ Max No Of Messages, 317
rmqmessage, 318
RMQ Mode, 317
RMQReadWait, 318
RMQSendMessage, 318
RMQSendWait, 318
rmqslot, 318
RMQ Type, 317
robjoint, 361
RoboCom Light, 350
robot alignment, 152
RobotStudio, 304
robtarget, 413
roll, 143
Rotating move, 233
Rotating Move, 396
routine call, 341
RTP1 protocol, 349

S
SafeMove Assistant, 286
SCWrite, 302
select tasks, 333
SEMISTATIC, 325
SenDevice, 351
send message, 374
sensor, 264, 347
sensor_speed, 207
Sensor Interface, 347
sensor object, 186
sensors

configuring, 348
Sensor Synchronization, 181
Sensor systems, 231
Serial Port, Transmission Protocol type, 349–350
Server address, 291, 295, 299
Server path, 291, 299
Server type, 291, 299
service, 398
service connection, 357
service routines

Electronically Linked Motors, 70
Servo Tool Change, 379
SetAllDataVal, 28
SetDataSearch, 28
SetDataVal, 28
SetSysData, 52
settings.xml, 363
settings element, 366
setting up tasks, 328
set up Collision Detection, 279
SetupCyclicBool, 64
SG Process, 393
shapedata, 239
shared resources, 343
Show Device, 291, 295, 299
signal, 337, 341
SiTool, 370
SiWobj, 370
SocketAccept, 308
SocketBind, 308
SocketClose, 308
SocketConnect, 308
SocketCreate, 308
socketdev, 308
SocketGetStatus, 309
SocketListen, 308
Socket Messaging, 305
SocketReceive, 308
SocketSend, 308
socketstatus, 308
soft servo, 271
Soft Stop Timeout, 393
software licenses, 15
speed, 273
speed_ratio, 78
Speed Absolute Max, 396, 412
Speed Limit 1 - 6, 394
Speed Max Uncalibrated, 397
speed reduction % button, Machine
Synchronization, 207
speed warnings, Machine Synchronization, 207
Squeeze Position 1 -10, 393
Stall Torque, 395
STATIC, 325

Application manual - Controller software IRC5 419
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Index

static_position_limit , 412
stationary world zone, 239
STCalcForce, 392
STCalcTorque, 392
STCalib, 392
STClose, 392
StepBwdPath, 40
STIsCalib, 392
STIsClosed, 392
STIsIndGun, 392
STIsOpen, 392
STIsServoTool, 392
STOpen, 392
StorePath, 250
Stress Duty Cycle, 396, 409, 412
string, 361
string termination, 307
StrToByte, 25
STTune, 392
STTuneReset, 392
supervision level, 275, 277, 281
Supervision Type, 396, 410, 412
Sync Check Off, 394
synchronizing tasks, 339
synchronous movements, 388
syncident, 339
syncident, data type, 327
SyncMoveResume, 250
SyncMoveSuspend, 250
SysFail, 325
SysHalt, 325
SysStop, 325
system parameters

configuration functionality, 33
Controller topic, 359
Motion topic, 359
Multitasking, 325
Sensor Interface, 349–350

system resources, 343

T
Task, Task type, 325
Task, type, 325
taskid, 327, 345
taskid, data type, 327
Task in foreground, 330
Task in foreground, Task type, 325
Task Panel Settings, 332
task priorities, 330
TaskRunMec, 344
TaskRunMec, function, 327
TaskRunRob, 344
TaskRunRob, function, 327
tasks, 323, 333, 339

adding, 328
data type, 327
editing programs, 328
setting up, 328

tasks, data type, 327
template configuration files, 409
temporary world zone, 239
TestAndSet, 343
TestAndSet, function, 327
TextGet, 47
TextTabFreeToUse, 47
TextTabGet, 47
TextTabInstall, 47

text table file, 46
Ti Integration Time Speed Loop, 396–397
time, 361
tip change calibration, 389
Tip Force 1 - 10, 393
tip wear calibration, 389
tool calibration, 154
tool change calibration, 389
tools, 137
torque, 273
torque 1 - torque 6, 394
Torque Absolute Max, 396
torque distribution, 75
torque follower, 75
track motion, 271
Transmission, 396, 409, 412
Transmission Gear High, 245
Transmission Gear Low, 245
Transmission Gear Ratio, 396, 412
Transmission protocol, 291, 295, 299
Transmission protocol, 291, 295, 299
Transmission Protocol, type, 349–350
trapdata, 44
trap routine, 314
TriggC, 84
TriggCheckIO, 84
triggdata, 83
TriggEquip, 83
triggering, 282
TriggInt, 84
TriggIO, 83
triggios, 83
triggiosdnum, 83
TriggJ, 84
TriggL, 84
TriggLIOs, 84
TriggRampAO, 84
TriggSpeed, 40
TriggStopProc, 40
triggstrgo, 83
Trusted, 291, 295, 299
TrustLevel, Task type, 325
TUNE_FRIC_LEV, 159
TUNE_FRIC_RAMP, 159
TuneServo, 159
tuning, 281
tuning, automatic, 157
tuning, manual, 159
type, 365
Type, 291, 295, 299
Type, Task type, 325
Type, Transmission Protocol type, 349–350

U
uncalib, 138
Uncalibrated Control Master 0, 397
Unicode, 19
Unit_ready input signal, 411
UnpackRawBytes, 94
unsynchronize, 72
Update revolution counter, 400
Upper Joint Bound, 395, 412
Use Activation Relay, 412
Use Connection Relay, 383
Use Linked Motor Process, 67
Use Process, 67
Use ramp time, 394

420 Application manual - Controller software IRC5
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Index

User ID, 299
user message functionality, 46
Username, 291, 295
Use Robot Calibration, 138

V
Velocity signal, 232
verification, 147

W
waiting for tasks, 339
WaitSyncTask, 339
WaitSyncTask, instruction, 327
WaitUntil, 337
WAN port, 357
WarmStart, 34
world zones, 237
Wrist Move, 172
wrist replacement, 140
Write, 90
WriteAnyBin, 90
WriteBin, 90
WriteBlock, 351

WriteCfgData, 34
WriteRawBytes, 94
WriteStrBin, 90
WriteVar, 351
WZBoxDef, 239
WZCylDef, 239
WZDisable, 240
WZDOSet, 240
WZEnable, 240
WZFree, 240
WZHomeJointDef, 240
WZLimJointDef, 240
WZLimSup, 240
WZSphDef, 239
wzstationary, 239
wztemporary, 239

Y
yaw, 143

Z
zones, 237

Application manual - Controller software IRC5 421
3HAC050798-001 Revision: V

© Copyright 2014-2025 ABB. All rights reserved.

Index

ABB AB
Robotics & Discrete Automation
S-721 68 VÄSTERÅS, Sweden
Telephone +46 10-732 50 00

ABB AS
Robotics & Discrete Automation
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.
Robotics & Discrete Automation
No. 4528 Kangxin Highway
PuDong New District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

ABB Inc.
Robotics & Discrete Automation
1250 Brown Road
Auburn Hills, MI 48326
USA
Telephone: +1 248 391 9000

abb.com/robotics

3H
A
C
0
50
79
8-
0
0
1,
R
ev

V
,e
n

© Copyright 2014-2025 ABB. All rights reserved.
Specifications subject to change without notice.

	Cover Page
	Table of contents
	Overview of this manual
	Open source and 3rd party components
	1 Introduction to RobotWare
	1.1 Products, classes, and options
	Software products
	Product classes
	Option groups

	1.2 RAPID language and programming environment
	General
	Key features of RAPID
	Summary of the RAPID concept
	Ease of use
	Simple RAPID program examples
	Hello world
	Displaying messages on the FlexPendant
	Draw a square
	Draw an arc

	References

	2 RobotWare-OS
	2.1 Advanced RAPID
	2.1.1 Introduction to Advanced RAPID
	Introduction to Advanced RAPID

	2.1.2 Bit functionality
	2.1.2.1 Overview
	Purpose
	What is included

	2.1.2.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.2.3 Bit functionality example
	Program code

	2.1.3 Data search functionality
	2.1.3.1 Overview
	Purpose
	What is included

	2.1.3.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.3.3 Data search functionality examples
	Set unknown variable
	Reset a range of variables
	List/set certain variables

	2.1.4 Alias I/O signals
	2.1.4.1 Overview
	Purpose
	What is included

	2.1.4.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.4.3 Alias I/O functionality example
	Assign alias name to signal

	2.1.5 Configuration functionality
	2.1.5.1 Overview
	Purpose
	What is included

	2.1.5.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.5.3 Configuration functionality example
	Configure system parameters

	2.1.6 Power failure functionality
	2.1.6.1 Overview
	Purpose
	What is included

	2.1.6.2 RAPID components and system parameters
	Data types
	Instructions
	Functions
	System parameters

	2.1.6.3 Power failure functionality example
	Test for interrupted path

	2.1.7 Process support functionality
	2.1.7.1 Overview
	Purpose
	What is included
	Limitations

	2.1.7.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.7.3 Process support functionality examples
	Signal proportional to speed
	Resume signals after stop
	Move TCP backwards

	2.1.8 Interrupt functionality
	2.1.8.1 Overview
	Purpose
	What is included

	2.1.8.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.8.3 Interrupt functionality examples
	Interrupt when persistent variable changes
	Error interrupt

	2.1.9 User message functionality
	2.1.9.1 Overview
	Purpose
	What is included

	2.1.9.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.9.3 User message functionality examples
	Book error number
	Error message from text table file

	2.1.9.4 Text table files
	Overview
	Explanation of the text table file
	Example of text table file

	2.1.10 RAPID support functionality
	2.1.10.1 Overview
	Purpose
	What is included

	2.1.10.2 RAPID components
	Data types
	Instructions
	Functions

	2.1.10.3 RAPID support functionality examples
	Activate tool
	Get argument name
	Test if program pointer has been moved

	2.2 Analog Signal Interrupt
	2.2.1 Introduction to Analog Signal Interrupt
	Purpose
	What is included
	Basic approach
	Limitations

	2.2.2 RAPID components
	Data types
	Instructions
	Functions

	2.2.3 Code example
	Temperature surveillance

	2.3 Cyclic bool
	2.3.1 Cyclically evaluated logical conditions
	Purpose
	What is included
	Basic approach
	Restart and reset behavior
	Configuration
	Syntax
	SetupCyclicBool Flag Cond [\Signal]
	RemoveCyclicBool Flag

	Limitations

	2.3.2 Cyclic bool examples
	Using digital input and output signals
	Using bool variables
	Using num and dnum variables
	Using alias variables
	Using user defined constants for comparison
	Handing over arguments by reference

	2.3.3 System parameters
	About the system parameters
	Type Cyclic bool settings

	2.3.4 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	2.4 Electronically Linked Motors
	2.4.1 Overview
	Description
	Purpose
	What is included
	Basic approach
	Limitations

	2.4.2 Configuration
	2.4.2.1 System parameters
	About the system parameters
	Joint
	Process
	Linked M Process

	2.4.2.2 Configuration example
	About this example
	Joint
	Process
	Linked M Process

	2.4.3 Managing a follower axis
	2.4.3.1 Using the service routine for a follower axis
	About the service routine
	Copy service routine file to HOME
	Load cfg files
	Data variables
	Start service routine
	Menu buttons

	2.4.3.2 Calibrate follower axis position
	Overview
	Unsynchronize
	Jog follower axis
	Fine calibrate

	2.4.3.3 Reset follower axis
	Overview
	Reset follower automatically
	Reset follower by manual jogging

	2.4.4 Tuning a torque follower
	2.4.4.1 Torque follower descriptions
	About torque followers
	Torque distribution
	Position accuracy reduction

	2.4.4.2 Using the service routine to tune a torque follower
	About the service routine for torque follower
	Opening the tune torque follower menu
	Tuning the torque distribution
	Tuning the position accuracy reduction
	Tuning the temporary position delta

	2.4.5 Data setup
	2.4.5.1 Set up data for the service routine
	Overview
	Data descriptions
	Edit data variables

	2.4.5.2 Example of data setup
	About this example
	l_f_axis_name
	l_f_mecunt_n
	l_f_axis_no
	l_m_mecunt_n
	l_m_axis_no
	offset_ratio
	speed_ratio
	displacement

	2.5 Fixed Position Events
	2.5.1 Overview
	Purpose
	What is included
	Basic approach

	2.5.2 RAPID components and system parameters
	Data types
	Instructions
	Functions
	System parameters

	2.5.3 Code examples
	Example without Fixed Position Events
	Result
	Example with TriggIO and TriggL instructions
	Result
	Example with MoveLSync instruction
	Result

	2.6 File and I/O device handling
	2.6.1 Introduction to file and I/O device handling
	About file and I/O device handling

	2.6.2 Binary and character based communication
	2.6.2.1 Overview
	Purpose
	What is included
	Basic approach
	Limitations

	2.6.2.2 RAPID components
	Data types
	Instructions
	Functions

	2.6.2.3 Code examples
	Communication with character based file
	Communication with binary file

	2.6.3 Raw data communication
	2.6.3.1 Overview
	Purpose
	What is included
	Basic approach
	Limitations

	2.6.3.2 RAPID components
	Data types
	Instructions
	Functions

	2.6.3.3 Code examples
	About the examples
	Write and read rawbytes
	Copy rawbytes

	2.6.4 File and directory management
	2.6.4.1 Overview
	Purpose
	What is included
	Basic approach

	2.6.4.2 RAPID components
	Data types
	Instructions
	Functions

	2.6.4.3 Code examples
	List files
	Move file to new directory
	Check sizes

	2.7 Device Command Interface
	2.7.1 Introduction to Device Command Interface
	Purpose
	What is included
	Basic approach
	Limitations

	2.7.2 RAPID components and system parameters
	Data types
	Instructions
	Functions
	System parameters

	2.7.3 Code example
	Write rawbytes to DeviceNet

	2.8 Logical Cross Connections
	2.8.1 Introduction to Logical Cross Connections
	Purpose
	Description
	What is included

	2.8.2 Configuring Logical Cross Connections
	System parameters

	2.8.3 Examples
	Logical AND
	Logical OR
	Inverted signals
	Several resultants
	Complex conditions

	2.8.4 Limitations
	Evaluation order
	Maximum number of actor I/O signals
	Maximum number of cross connections
	Maximum depth
	Do not create a loop
	Do not have the same resultant more than once
	Overlapping device maps

	2.9 Connected Services
	2.9.1 Overview
	Description
	Purpose
	What is included
	Prerequisites
	Basic workflow
	Limitations

	2.9.2 Connected Services connectivity
	Connected Services connection concept
	Troubleshooting

	2.9.3 Configuration - system parameters
	Connected Services Connection
	WAN configuration
	DNS configuration
	IP Routing configuration

	2.9.4 Configuring Connected Services
	Overview
	Direct internet connection
	Direct internet connection with manual DNS
	Internet connection with proxy

	2.9.5 Configuring Connected Services using gateway box
	Overview
	Controller with DHCP
	Controller with DHCP and manual DNS
	Gateway box on customer network
	Steps to configure DNS manually

	2.9.6 Connected Services on LAN 3
	Overview
	Steps to configure LAN 3

	2.9.7 Connected Services registration
	Connected Services startup
	Connected Services preparation
	Connected Services configuration
	Connected Services connectivity
	Connected Services registration
	Connected Services connected and registered

	2.9.8 Connected Services information
	Connected Services pages
	Introduction
	Overview page
	Server Connection page
	Registration page
	Advanced page

	Connected Services logs
	Force a reset of the software agent

	2.10 User logs
	2.10.1 Introduction to User logs
	Description
	Purpose
	What is included

	3 Motion performance
	3.1 Absolute Accuracy [603-1, 603-2]
	3.1.1 About Absolute Accuracy
	Purpose
	What is included
	When is Absolute Accuracy being used
	Absolute Accuracy active
	Absolute Accuracy not active

	RAPID instructions
	Absolute Accuracy and MultiMove

	3.1.2 Useful tools
	Overview
	Load Identification
	CalibWare

	3.1.3 Configuration
	Activate Absolute Accuracy
	Deactivate Absolute Accuracy
	Change calibration data

	3.1.4 Maintenance
	3.1.4.1 Maintenance that affect the accuracy
	Overview
	Tool recalibration
	Motor replacement
	Wrist replacement
	Arm replacement or disassembly
	Manipulator replacement

	3.1.4.2 Loss of accuracy
	Cause and action

	3.1.5 Compensation theory
	3.1.5.1 Error sources
	Types of errors
	Illustration

	3.1.5.2 Absolute Accuracy compensation
	Introduction
	Desired position
	Position due to deflection
	Fake target
	Compensated position

	3.1.6 Preparation of Absolute Accuracy robot
	3.1.6.1 ABB calibration process
	Overview
	Resolver offset calibration
	Absolute Accuracy calibration
	Absolute Accuracy verification
	Compensation parameters and birth certificate

	3.1.6.2 Birth certificate
	About the birth certificate

	3.1.6.3 Compensation parameters
	About the compensation parameters
	The compensation parameters

	3.1.7 Cell alignment
	3.1.7.1 Overview
	About cell alignment
	Alignment procedure
	Illustration

	3.1.7.2 Measure fixture alignment
	About fixture alignment
	Fixture measurement procedure
	Illustration

	3.1.7.3 Measure robot alignment
	Select method
	Alignment to physical base
	Alignment to theoretical base

	3.1.7.4 Frame relationships
	About frame relationships
	Determine robot base

	3.1.7.5 Tool calibration
	About tool calibration
	Tool calibration procedures

	3.2 Advanced Robot Motion [687-1]
	About Advanced Robot Motion

	3.3 Advanced Shape Tuning [included in 687-1]
	3.3.1 About Advanced Shape Tuning
	Purpose
	What is included
	Basic approach

	3.3.2 Automatic friction tuning
	About automatic friction tuning
	Program execution
	Limitations
	Example

	3.3.3 Manual friction tuning
	Overview
	Tune types
	Configure friction level

	3.3.4 System parameters
	3.3.4.1 System parameters
	About the system parameters
	Friction Compensation / Control Parameters
	Illustration

	3.3.4.2 Setting tuning system parameters
	Automatic tuning rarely requires changes in system parameters
	Transfer tuning to system parameters
	Starting with an estimated value

	3.3.5 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	3.4 Motion Process Mode [included in 687-1]
	3.4.1 About Motion Process Mode
	Purpose
	Available motion process modes
	Selection of mode
	Limitations

	3.4.2 User-defined modes
	Available tune parameters
	Tuning parameters from RAPID
	Example 1
	Example 2

	Predefined parameter values

	3.4.3 General information about robot tuning
	Minimizing cycle time
	Increasing path accuracy and reducing vibrations
	Compensating for foundation flexibility

	If accuracy still needs to be improved

	3.4.4 Additional information
	Motion Process Mode compared to TuneServo and AccSet
	Limitations
	Related information

	3.5 Wrist Move [included in 687-1]
	3.5.1 Introduction to Wrist Move
	Purpose
	Using Wrist Move
	Limitations

	3.5.2 Cut plane frame
	Defining the cut plane frame
	Illustration, cut plane
	Prerequisites

	3.5.3 RAPID components
	Instruction

	3.5.4 RAPID code, examples
	Basic example
	Advanced example
	Illustration, pSlot and wSlot

	3.5.5 Troubleshooting
	Unexpected cut shape
	Mismatching radius
	Impossible movement with chosen axis pair

	4 Motion coordination
	4.1 Machine Synchronization [607-1], [607-2]
	4.1.1 Overview
	Two options
	Purpose
	Description
	Functionality
	Basic approach

	4.1.2 What is needed
	Sensor Synchronisation
	Analog Synchronization

	4.1.3 Synchronization features
	Features

	4.1.4 General description of the synchronization process
	Example with a press

	4.1.5 Limitations
	Limitations on additional axes
	Object queue lost on warm start or power failure
	Minimum speed
	Maximum speed
	Compatibility with the option Conveyor Tracking

	4.1.6 Hardware installation for Sensor Synchronization
	4.1.6.1 Encoder specification
	Two phase type
	Technical data
	Example encoder

	4.1.6.2 Encoder description
	Overview
	Pulse channels
	Synchronization

	4.1.6.3 Installation recommendations
	Overview
	Placement

	4.1.6.4 Connecting encoder and encoder interface unit
	Overview
	Reduce noise
	Reduce spike pulses
	Encoder power supply
	Connecting encoder and the synchronization switch
	Finding the Encoder rotating direction

	4.1.7 Hardware installation for Analog Synchronization
	4.1.7.1 Required hardware
	Analog input board
	Analog linear sensor

	4.1.8 Software installation
	4.1.8.1 Sensor installation
	Overview
	About the installation
	Configuration of the default installation for Sensor Synchronization
	Configuration of the default installation for Analog Synchronization
	How to add a sensor manually for Sensor Synchronization
	How to add a sensor manually for Analog Synchronization

	4.1.8.2 Reloading saved Motion parameters
	Overview
	Reloading the SSYNC1 parameter
	Result

	4.1.8.3 Installation of several sensors
	About the installation
	DeviceNet Dual option
	Adding sensors manually
	Available sensors

	4.1.9 Programming the synchronization
	4.1.9.1 General issues when programming with the synchronization option
	Activate sensor
	Automatic connection
	Connection via WaitSensor instruction
	Programming Sensor Synchronization
	Synchronize the sensor

	4.1.9.2 Programming examples
	Sensor Synchronization program
	Analog Synchronization program

	4.1.9.3 Entering and exiting coordinated motion in corner zones
	Corner zones can be used
	Dropping object after corner zone
	Correct example
	Incorrect example

	4.1.9.4 Use several sensors
	Overview
	Program example

	4.1.9.5 Finepoint programming
	Overview
	Program example

	4.1.9.6 Drop sensor object
	Overview
	Considerations

	4.1.9.7 Information on the FlexPendant
	Overview
	Jogging window
	I/O window
	Sensor Synchronization
	Analog Synchronization

	4.1.9.8 Programming considerations
	Performance limits
	Motion commands
	Manual mode
	Speed reduction % button
	Programmed speed
	Finepoints
	Position warnings
	Speed warnings
	Change of tools
	Instructions that will deactivate the synchronization
	Other RAPID limitations

	4.1.9.9 Modes of operation
	Operation in manual reduced speed mode (< 250 mm/s)
	Operation in automatic mode
	Start/Stop
	Emergency Stop/Restart

	Operation under manual full speed mode (100%)
	Hold to run button
	Stop/Restart

	4.1.10 Robot to robot synchronization
	4.1.10.1 Introduction
	Overview
	Requirements

	4.1.10.2 The concept of robot to robot synchronization
	Description
	Illustration

	4.1.10.3 Master robot configuration parameters
	Overview
	Topic: Motion
	Topic: Process
	Topic: I/O
	EIO_UNIT
	EIO_SIGNAL

	4.1.10.4 Slave robot configuration parameters
	Overview
	Description
	Topic: Process
	SENSOR_SYSTEM
	CAN_INTERFACE

	Topic: I/O
	EIO_UNIT
	EIO_SIGNAL

	4.1.10.5 Programming example for master robot
	Overview
	Master robot programming
	Considerations

	4.1.10.6 Programming example for slave robot
	Overview
	Slave robot programming
	Considerations

	4.1.11 Synchronize with hydraulic press using recorded profile
	4.1.11.1 Introduction
	Overview
	Principles of hydraulic press synchronization

	4.1.11.2 Configuration of system parameters
	Introduction
	General settings
	Settings for analog input with no DSQC377A encoder
	Settings for sensor using Group input

	4.1.11.3 Program example
	Overview
	Program example
	First press cycle
	Second press cycle
	Third press cycle

	4.1.12 Synchronize with molding machine using recorded profile
	4.1.12.1 Introduction
	Overview
	Principles of mold synchronization

	4.1.12.2 Configuration of system parameters
	Introduction
	General settings
	Settings for analog input with no DSQC377A encoder
	Settings for sensor using Group input

	4.1.12.3 Program example
	Overview
	Program example
	First press cycle
	Second press cycle
	Third press cycle

	4.1.13 Supervision
	Introduction
	Example

	4.1.14 System parameters
	About system parameters
	Fieldbus Command
	Sensor systems
	CAN Interface
	Motion Planner
	Mechanical unit
	Single type
	Transmission
	Path Sensor Synchronization

	4.1.15 I/O signals
	Overview
	Object queue signals

	4.1.16 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	5 Motion Events
	5.1 World Zones [608-1]
	5.1.1 Overview of World Zones
	Purpose
	What is included
	Basic approach
	Limitations

	5.1.2 RAPID components
	Data types
	Instructions
	Functions

	5.1.3 Code examples
	Create protected box
	Signal when robot is in position

	6 Motion functions
	6.1 Independent Axis [610-1]
	6.1.1 Overview
	Purpose
	What is included
	Basic approach
	Reset axis
	Limitations

	6.1.2 System parameters
	About the system parameters
	Arm
	Transmission

	6.1.3 RAPID components
	Data types
	Instructions
	Functions

	6.1.4 Code examples
	Save cycle time
	Polish by rotating axis 6
	Reset an axis

	6.2 Path Recovery [611-1]
	6.2.1 Overview
	Purpose
	What is included
	Limitations

	6.2.2 RAPID components
	Data types
	Instructions
	Functions

	6.2.3 Store current path
	Why store the path?
	Basic approach
	Example
	Store path in a MultiMove system
	SyncArc example with coordinated synchronized movement
	T_ROB1 task program
	T_ROB2 task program
	T_STN1 task program

	Suspend and resume synchronized movements in the SyncArc example
	T_ROB1
	T_ROB2
	T_STN1

	6.2.4 Path recorder
	What is the path recorder
	How to use the path recorder
	Lift the tool
	Simple example
	Complex example
	Resume path recorder
	SyncArc example with coordinated synchronized movement
	T_ROB1 task program
	T_ROB2 task program
	T_STN1 task program

	6.3 Path Offset [612-1]
	6.3.1 Overview
	Purpose
	What is included
	Basic approach
	Limitations

	6.3.2 RAPID components
	Data types
	Instructions
	Functions

	6.3.3 Related RAPID functionality
	The argument \Corr
	Interrupts

	6.3.4 Code example
	Linear movement with correction
	Program code

	7 Motion Supervision
	7.1 Collision Detection [613-1]
	7.1.1 Overview
	Purpose
	Description
	What is included
	Basic approach
	Collision detection for YuMi robots
	Collision detection for MultiMove robots

	7.1.2 Limitations
	Load definition
	Robot axes only
	Independent joint
	Soft servo
	No change until the robot moves
	Reversed movement distance
	Delay before reversed movement
	Robot on track motion

	7.1.3 What happens at a collision
	Overview
	Collision illustration
	Robot behavior after a collision
	Speed and torque diagram

	7.1.4 Additional information
	Motion error handling

	7.1.5 Configuration and programming facilities
	7.1.5.1 System parameters
	About system parameters
	Motion Supervision
	Motion Planner
	Motion System
	General RAPID

	7.1.5.2 RAPID components
	Instructions

	7.1.5.3 Signals
	Digital outputs

	7.1.6 How to use Collision Detection
	7.1.6.1 Set up system parameters
	Activate supervision
	Define supervision levels

	7.1.6.2 Adjust supervision from FlexPendant
	Speed adjusted supervision level
	Set jog supervision on FlexPendant

	7.1.6.3 Adjust supervision from RAPID program
	Default values
	Temporarily deactivate supervision
	Reactivate supervision
	Tuning

	7.1.6.4 How to avoid false triggering
	About false triggering
	Actions to take

	7.1.7 Collision Avoidance
	Introduction
	False collision warning
	Activation/deactivation of objects
	Trigger signals
	Limitations
	Disabling Collision Avoidance
	Decrease sensitivity between links for IRB 14000

	7.2 SafeMove Assistant
	Purpose
	Description
	System parameters

	8 Communication
	8.1 FTP Client [614-1]
	8.1.1 Introduction to FTP Client
	Purpose
	Network illustration
	Description
	What is included
	Basic approach
	Requirements
	Directory listing style on FTP server
	Welcome Message from FTP server

	Limitations
	Example

	8.1.2 System parameters
	Application protocol
	Transmission protocol

	8.1.3 Examples
	Example configuration
	Example with FlexPendant
	Example with RAPID code

	8.2 SFTP Client [614-1]
	8.2.1 Introduction to SFTP Client
	Purpose
	Network illustration
	Description
	What is included
	Basic approach
	Requirements
	Limitations
	Example

	8.2.2 System parameters
	Application protocol
	Transmission protocol

	8.2.3 Examples
	Example configuration
	Example with FlexPendant
	Example with RAPID code

	8.3 NFS Client [614-1]
	8.3.1 Introduction to NFS Client
	Purpose
	Description
	What is included
	Basic approach
	Prerequisites
	Limitations

	8.3.2 System parameters
	Application protocol
	Transmission protocol

	8.3.3 Examples
	Example configuration
	Example with FlexPendant
	Example with RAPID code

	8.4 PC Interface [616-1]
	8.4.1 Introduction to PC Interface
	Purpose
	What is included
	Basic approach

	8.4.2 Send variable from RAPID
	SCWrite instruction
	Code example
	RAPID module for the sender
	PC SDK for the receiver

	8.4.3 ABB software using PC Interface
	Overview
	RobotStudio

	8.5 Socket Messaging [616-1]
	8.5.1 Introduction to Socket Messaging
	Purpose
	What is included
	Basic approach

	8.5.2 Schematic picture of socket communication
	Illustration of socket communication

	8.5.3 Technical facts about Socket Messaging
	Overview
	No string termination
	Unintended merge of messages
	Non printable characters

	8.5.4 RAPID components
	Data types
	Instructions for client
	Instructions for server
	Functions

	8.5.5 Code examples for Socket Messaging
	Example of client/server communication
	Example of error handler

	8.6 RAPID Message Queue [included in 616-1, 623-1]
	8.6.1 Introduction to RAPID Message Queue
	Purpose
	What is included
	Basic approach

	8.6.2 RAPID Message Queue behavior
	Illustration of communication
	Creating a PC SDK client
	What can be sent in a message
	Queue name
	Queue handling
	Queue modes
	Interrupt mode
	Synchronous mode

	Message content
	RAPID task not executing
	Message size limitations
	Message lost
	Queue lost
	Related information

	8.6.3 System parameters
	About the system parameters
	Type Task

	8.6.4 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	8.6.5 Code examples
	Example using RMQSendMessage and RMQGetMessage with PC SDK
	Example of RAPID with RMQ
	Example of PC SDK with RMQ

	9 Engineering tools
	9.1 Multitasking [623-1]
	9.1.1 Introduction to Multitasking
	Purpose
	Basic description
	What is included
	Basic approach

	9.1.2 System parameters
	About the system parameters
	Task

	9.1.3 RAPID components
	Data types
	Instructions
	Functions

	9.1.4 Task configuration
	9.1.4.1 Debug strategies for setting up tasks
	Setting up tasks
	Make changes to task program

	9.1.4.2 Priorities
	How priorities work
	Example of priorities

	9.1.4.3 Task Panel Settings
	Purpose of Task Panel Settings
	Allow selection of STATIC and SEMISTATIC tasks in tasks panel

	9.1.4.4 Select which tasks to start with START button
	Background
	Task Panel Settings
	Selecting tasks
	Resetting debug settings in manual mode
	Switching to auto mode
	Restarting the controller
	Deselect task in synchronized mode

	9.1.5 Communication between tasks
	9.1.5.1 Persistent variables
	About persistent variables
	Example with persistent variable
	Module for common data

	9.1.5.2 Waiting for other tasks
	Two techniques
	Polling
	Polling example
	Interrupt
	Interrupt example

	9.1.5.3 Synchronizing between tasks
	Synchronizing using WaitSyncTask
	WaitSyncTask example

	9.1.5.4 Using a dispatcher
	What is a dispatcher?
	Dispatcher example

	9.1.6 Other programming issues
	9.1.6.1 Share resource between tasks
	Flag indicating occupied resource
	Example with flag and TestAndSet

	9.1.6.2 Test if task controls mechanical unit
	Two functions for inquiring
	Example with TaskRunMec and TaskRunRob

	9.1.6.3 taskid
	taskid syntax
	Code example

	9.1.6.4 Avoid heavy loops
	Background tasks loop continuously
	Example

	9.2 Sensor Interface [628-1]
	9.2.1 Introduction to Sensor Interface
	Purpose
	What is included
	Basic approach
	Limitations

	9.2.2 Configuring sensors
	9.2.2.1 About the sensors
	Supported sensors

	9.2.2.2 Configuring sensors on serial channels
	Overview
	System parameters
	Configuration example

	9.2.2.3 Configuring sensors on Ethernet channels
	Overview
	System parameters
	Configuration examples

	9.2.3 RAPID
	9.2.3.1 RAPID components
	Data types
	Instructions
	Functions
	Modules
	Constants

	9.2.4 Examples
	9.2.4.1 Code examples
	Interrupt welding to adjust settings
	Reading positions from sensor

	9.3 Robot Reference Interface [included in 689-1]
	9.3.1 Introduction to Robot Reference Interface
	Introduction
	Robot Reference Interface

	9.3.2 Installation
	9.3.2.1 Connecting the communication cable
	Overview
	Location

	9.3.2.2 Prerequisites
	Overview
	UDP/IP or TCP IP
	Recommendations

	9.3.2.3 Data orchestration
	Overview
	Illustration
	Data from the Controller topic
	Data from the Motion topic

	9.3.2.4 Supported data types
	Overview
	Data types

	9.3.3 Configuration
	9.3.3.1 Interface configuration
	Configuration files
	Related information

	9.3.3.2 Interface settings
	Overview
	Settings.xml
	Example

	9.3.3.3 Device description
	Overview
	Description.xml
	Example
	Name
	Convention
	Type and Class
	Network
	Channel
	Settings

	9.3.3.4 Device configuration
	Overview
	Example
	Enums
	Member
	Record
	Field
	Properties

	9.3.4 Configuration examples
	9.3.4.1 RAPID programming
	RAPID module

	9.3.4.2 Example configuration
	Overview
	Settings.xml
	Description.xml
	Configuration.xml
	RAPID configuration
	Transmitted XML messages
	Message sent out from robot controller
	Message received from robot controller

	9.3.5 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	9.4 Auto Acknowledge Input
	Description
	Remote control of operating mode
	Limitations
	Activate Auto Acknowledge Input

	10 Tool control options
	10.1 Servo Tool Change [630-1]
	10.1.1 Overview
	Purpose
	What is included
	Basic approach

	10.1.2 Requirements and limitations
	Additional axes
	Tool changer
	Up to 8 tools
	Moving deactivated tool
	Activating wrong tool

	10.1.3 Configuration
	Configuration overview
	How to configure each tool

	10.1.4 Connection relay
	Overview
	System parameters
	Example of connection relay configuration

	10.1.5 Tool change procedure
	How to change tool

	10.1.6 Jogging servo tools with activation disabled
	Overview
	What to do when Activation disabled appears

	10.2 Tool Control [1180-1]
	10.2.1 Overview
	Purpose
	What is included
	Basic approach
	Prerequisites

	10.2.2 Servo tool movements
	Closing and opening of a servo tool
	Synchronous and asynchronous movements

	10.2.3 Tip management
	About tip management
	Tip wear calibration
	Tip change calibration
	Tool change calibration

	10.2.4 Supervision
	Max and min stroke
	Motion supervision
	Maximum torque
	Speed limit

	10.2.5 RAPID components
	About the RAPID components
	Instructions
	Functions
	Data types

	10.2.6 System parameters
	About the system parameters
	SG Process
	Force Master
	Force Master Control
	Arm
	Acceleration Data
	Motor Type
	Motor Calibration
	Stress Duty Cycle
	Supervision Type
	Transmission
	Lag Control Master 0
	Uncalibrated Control Master 0

	10.2.7 Commissioning and service
	Commissioning the servo tool
	Template file locations

	Disconnect/reconnect a servo tool
	Recover from accidental disconnection

	10.2.8 Mechanical unit calibrations
	Fine calibration
	Update revolution counter

	10.2.9 RAPID code example
	How to use the code package
	Using shell routines

	10.2.10 Using tool control for gripper applications
	Templates
	Parameters
	Instructions and positions

	10.3 I/O Controlled Axes [included in 1180-1]
	10.3.1 Overview
	Purpose
	What is included
	Basic approach

	10.3.2 Contouring error
	What is a contouring error
	Error handling

	10.3.3 Correcting the position
	Correcting the position

	10.3.4 Tool changing
	Tool changing

	10.3.5 Installation
	Installation

	10.3.6 Configuration
	Template configuration files
	Adding the I/O controlled axis
	Mandatory settings for the I/O controlled axis
	Optional customization settings
	Adding another axis
	Settings for PROFINET

	10.3.7 System parameters
	About the system parameters
	Type External Control Process Data
	Type Acceleration Data
	Type Arm
	Type Joint
	Type Mechanical Unit
	Type Stress Duty Cycle
	Type Supervision Type
	Type Transmission

	10.3.8 RAPID programming
	Data types
	Instructions
	RAPID example

	Index

