Discrete application platform

Trace back information:
Workspace RW 6-0 version a3
Checked in 2014-11-11
Skribenta version 4.1.349

Application manual
Discrete application platform

Document ID: 3HAC050994-001

Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

The information in this manual is subject to change without notice and should not
be construed as a commitment by ABB. ABB assumes no responsibility for any errors
that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to
persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's
written permission.

Additional copies of this manual may be obtained from ABB.

The original language for this publication is English. Any other languages that are
supplied have been translated from English.

© Copyright 2005-2014 ABB. All rights reserved.

ABB AB
Robotics Products
Se-721 68 Vasteras

Sweden

Table of contents

Table of contents

1 Discrete application summary 7
P S 1W T 0 =T A (0 Y = T 8

2 Programming discrete application 13
2.1 Programming SUMIMAIYc.cuiuiueee e eeaeaeae e eeaeaean s e eeananan s e e nanan e seannananns 13
2.1.1 Designing a discrete applicationoooiiiiiii i 14

P2 I | T3 =1 =1 £ T o 24

3 RAPID Reference 29
3.1 RAPID Data types .. .oucuieeiici i 29
3.1.1 dadescapp - Discrete application - application descriptorccccoeviiiiiiiinnnen.. 29

3.1.2 dadescprc - Discrete application - process descriptorcocoveieiiiiiiiiienenns 32

3.1.3 daintdata - Discrete application - internal dataccccoviiiiiiiiiiii, 34

3.2 RAPID INSTUCHIONS .ouuiiiiiiiie ittt et e e e e e e r e e e e aeaes 36
3.2.1 DaActProc - Discrete application - activate processcoccveeieiiiiviiiieininnnnns 36

3.2.2 DaDeactAllProc - Discrete application - deactivate all processes 37

3.2.3 DaDeactProc - Discrete application - deactivate processcceevviiiiiiinenns 38

3.2.4 DaDefExtSig - Discrete application - definition of the external signals 39

3.2.5 DaDefProcData - Discrete application - definition of the process data 42

3.2.6 DaDefProcSig - Discrete application - definition of the process signals 44

3.2.7 DaDefUserData - Discrete application - define userdatacccoviiiiiienins 46

3.2.8 DaGetCurrData - Discrete application - get currentdataccccoeviiiiiinanns 48

3.2.9 DaProcML/MJ - Discrete Application - multiple processescccoveieieiinnnns 51

3.2.10 DaSetCurrData - Discrete application - set currentdatacocoveviieiinnnen.. 55

3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour 57

3.2.12 DaStartManAction - Discrete application - execute an application manually 59

3.2.13 DaGetAppDescr - Discrete application - get application descriptors 61

3.2.14 DaGetApplindex - Discrete application - index of application array 62

3.2.15 DaGetNumOfProcs - Discrete application - get number of processes 64

3.2.16 DaGetNumOfRob - Discrete application - number of robotsc..c.oenniie. 65

3.2.17 DaGetPrcDescr - Discrete application - get process descriptorcoceuenenens 66

3.3 RAPID FUNCHIONS ...ttt ettt et et s e e et e e s e s e e e e e e aneanannns 68
3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event 68

3.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system 70

3.3.3 DaGetMP - Discrete application - Get motion plannerc.cocveviiiiiiiiinnnn.. 71

3.3.4 DaGetRobotName - Discrete application - Get Robot namecccenenee. 73

3.3.5 DaGetTaskName - Discrete application - Get Task namecccceviinenens 75
3HAC050994-001 Revision: - 5

© Copyright 2005-2014 ABB. All rights reserved.

This page is intentionally left blank

1 Discrete application summary

1 Discrete application summary

Overview

The option Discrete Application Platform (DAP) provides a software framework for
application software engineers.

The package is an optimal tool for fast and straight forward development by
providing a setup of specialized methods and datatypes in RAPID. It encapsulates
motion and process execution in one RAPID-instruction call (see EGIML/EG1MJ).

The use of the package reduces application development costs and ensures a high
quality level and optimal use of the IRC5-system.
The Discrete application is tailored for applications similar to SpotWelding which
with the following environment:
+ Discrete Application combines finepoint positioning with execution of up to
four parallel processes.
+ The process is specialized for monitoring an external process device.
+ Supports encapsulation of the process and motion in shell-routines provided
to the end user.
The package is designed to have an internal kernel administrating the fast and
quality secured process sequence skeleton. It calls RAPID routines which the
application writer has to prepare to fulfill his specific task. It is up to the writer of
the application how much flexibility to leave to the end user.
It is possible to use the application in a MultiMove system with up to four robots
using the application.

Continues on next page

3HAC050994-001 Revision: - 7

© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary

1.1 Summary (DAP)

1.1 Summary (DAP)

Discrete application features
The Discrete Application package contains the following features:

Installation of one process instance of a Discrete Application per robot in the
system

Installation of max four processes running independently in parallel in the
system

Dynamic configuration of one RAPID task per process
Dynamic installation of application modules
Minimized RAPID-memory requirement

Fast and accurate fine positioning

Precalculation of the next position resulting in quick start after a process
completion

Free naming of I/O-signals used by the kernel.

Setting of program number for an external device

Setting of external start signal

Subscribing for external ready signal

Subscribing for external stop signal

Dual/single tool

Time and sequence related events calling RAPID actions hooks
Exception event RAPID hooks such as Process Hold / Release and Abort
Automatic process retry

Process simulation

External process simulation

Return to the process position

Process tool counters

Supports both program and start triggered external devices
Process current data setting and retrieving

Manual process execution

Possible to start external process disregarding the in position event
Individual process abort

Cancelling of all processes at instruction abortion

Principles of discrete applications
The scope of the Discrete Application is limited to RAPID, I/O-configuration and
system configuration.

Continues on next page

8

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary

1.1 Summary (DAP)
Continued

Layers of a discrete application

Robot program
-User of application writer’s interface

Application writer

User part Kernel
-Variables -Shell routine
-Functions/ | | -Hooks
Routines -Init DA-kernel
-Datatype
-Task installation

Fuctions DA kernel
Prosedures | -Motion

PER -Sequencer
110 -Process and application
Hooks administration

xx1400002241

Figure 1.1: Layers and interfaces

DAP is based on a separate handling of motion and processes. The motion acts
as trigger and synchronisation towards the processes. On its way towards the
programmed position, the motion task will trigger actions in the process tasks.

The triggers are activated by virtual digital signals. Their names are fix and
predefined. They are not multiplied by additional process installations.

Each process provides storage for three current data of anytype which are updated
with the begin of the process, i.e. it’s content is stable during process execution.
The data have different purposes:

+ process data: information altering with each instruction

« process tool data: information connected to the four equipment, i.e. equipment
config data

- internal process data: information needed by the application shell.

Calls to hooks offer application writer’s tools to shape the application processes.
All the RAPID PERS data is used to customize the internal process sequence.

A program stop will only stop the motion task execution. The process and
supervision does by default carry on their tasks until they come to a well defined
process stop. A process hold may though very well be activated through the use
of the shelf routines.

The application may run independently of the motion if manually triggered.

Continues on next page

3HAC050994-001 Revision: - 9
© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary

1.1 Summary (DAP)
Continued

Supported equipment:

Up to four external process device monitoring with parallel interface. The
device may be of two types - program schedule or start signal triggered. The
process monitoring is interrupted by either process ready, timeout or external
stop.

Any type of process tool which can be controlled through RAPID-code and
1/0O interface is applicable.

Programming principles

Both the robot’s movement and the process control are supposed to be embedded
in one shell instruction of free format and name.

The application “EG1” is specified by (see the example code that follows with the
DAP option, RobotwareXX/options/dap):

process data
process tool data
internal process data

The system modules EG1BAS.SYS, EG1PRC.SYS and EG1TOL.SYS
containing RAPID shell routine, data types, data definitions and routines.

System parameters: the kernel I/0 configuration.

Discrete application instructions

Instruction Description

DaActProc Activate a process.

DaDeactAllProc Deactivate all installed process.

DaDeactProc Deactivate a specific process.

DaDefExtSig Define I/O-signals interfacing the external device.

DaDefProcData Define three data which shall be used as current data at process
start.

DaDefProcSig Define I/O-signals for the process execution information.

DaDefUserData Define process user data which enables the application writer to
influence the framework behaviour.

DaGetCurrData Retrieve the content of the current data of the types defined by
DaDefProcData.

DaProcML Initiator of motion and process. Order time event calculation. Move

the TCP along a linear path and perform n processes.

DaProcMJ Initiator of motion and process. Order time event calculation. Move

the TCP along a non-linear path and perform n processes.

DaSetCurrData Change the content of the current data of the types defined by

DaDefProcData.

DaSetupAppBehav |Deactivate one or more of the five user hooks: DaPrepPrcEG1,

DaTmEVtlEG1l, DaTmEVt2EG1l, DaTmEvt3EG1l, DaStartEG1l

DaStartManAction |The application runs independently of the motion, i.e. a manual trigg

of the application.

DaGetAppDescr Retrieve the application descriptors (one descriptor per robot).

Continues on next page

10

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

1 Discrete application summary

1.1 Summary (DAP)
Continued

Instruction

Description

DaGetNumOfProcs

Retrieve the number of precesses in the system.

DaGetNumOfRob

Retrieve the number of robots (application descriptors) in the system.

DaGetPrcDescr

Retrieve the process descriptors.

DaGetApplIndex

Retrieve index of current application descriptor.

Discrete application functions

Instruction

Description

DaGetFstTimeEvt

Retrieve the first event time of all active processes in the current
application descriptor.

DaCheckMMSOpt

Checks if any MultiMove option is installed.

DaGetMP

Retrieve the motion planner for current application descriptor.

DaGetRobotName

Retrieve the robot name for current application descriptor.

DaGetRobotName

Retrieve the name of the of the task that uses a specific application
descriptor.

Discrete application data types

Data type

Description

dadescapp

Application descriptor.

dadescprc

Process descriptor.

daintdata

Type of required first element of eglintdata.

Discrete application user hooks

The application name is added to the name of the hook. The following shows the
hooks for the example application "EG1".

Hook Description

DaCalcEvtEG1 |[Called before motion start.

DaPrepPrceGl |Motion start.

DaTmEVt1EG1 First time event delta time T1 in advance of inpos.

DaTmEVt2EG1 Second time event delta time T2 in advance of inpos.

DaTmEVt3EG1 Third time event delta time T3 in advance of inpos.

DaStartEG1 Inpos (or immediately after DaTmEvt3) before setting external start
signal.

DaEndPrcEG1 Called after receiving the ready signal.

DaExtStopEG1l |Called after receiving the external device stop signal.

DaTimoutEG1l Called after timeout has passed without getting either ready or stop.

DaHoldPrcEG1 |Called at process hold.

DaRIsPrcEG1 Called at process release after a hold.

DaAbortPrcEG1 |Called at process abortion.

3HAC050994-001 Revision: -

11

© Copyright 2005-2014 ABB. All rights reserved.

This page is intentionally left blank

2 Programming discrete application

2.1 Programming summary

2 Programming discrete application

2.1 Programming summary

Overview
The option Discrete Application supports creating new applications with a discrete
behaviour, see Discrete application summary on page 7. The writer of an
application will gain from the use of the framework in terms of:

+ Development time

* Run time execution time

« RAPID-program memory need

- Similar look and feel between applications
+ Tested kernel software

+ MultiMove system adaption

Continues on next page
3HAC050994-001 Revision: - 13
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.1 Designing a discrete application

2.1.1 Designing a discrete application

About this section

This is a description of the required steps to follow when writing a discrete
application. You can find example files for designing a discrete application in the
folder options\dap in your system.

Modules

Base module

There are three modules required for each application named “EG1”:
- Base module: EG1BAS.SYS
» Process module: EGTPRC.SYS
« Tool module: EG1TOL.SYS

These three modules will run in different RAPID tasks. If we, for example, have
one application and two processes it will look like the following figure:

Foreground |Background Background
T_Robl Task |taskl DA_PROCL1|task2 DA_PROC2

EG1BASSYS| 4
EG1PRC.SYS . .

EGI1TOLSYS[ZZZ7Z777 7777777 7 77 7 7 7 7 7 7

xx1400002242

Figure 2.1:

The figure above shows that module EG1BAS.SYS will be running in the T_ROB1
task. Module EG1PRC.SYS will be running in a background (process) task. There
can be as many process tasks started as the maximum number of processes
allowed. Today maximum number of processes are four. There will be at least one
process task attached to each robot that runs the application. In a MultiMove system
it is possible to have four robots connected to the same controller, and the four
processes can be distributed between the robots. If all of the robots in the system
run the application, each robot can only have one process task attached to it. But
if two robots run the application they can, for example, have two processes each.
It is only possible to have ONE discrete application in one MultiMove system, i.e.
all robots in the cell must run the same discrete application.

The figure above also shows that all installed RAPID-tasks will share code and
data declared in module EG1TOL.SYS.

The base module shall contain code and data which is accessed in the T_ROB1
task. It shall at least contain (see EG1BAS.SYS on page 20):

« init code for the framework
+ application shell routine

Continues on next page

14

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

Process module

Tool module

2.1.1 Designing a discrete application
Continued

« time event calculation hook

« apower on shelf routine named EG1ShPowerOn() where the initialization
of the application and processes is sited

 further shelf routines: The framework will call shelf routines at the appropriate
event given a name of the following convention:

- EG1ShStart

- EG1ShReStart
- EG1ShStop

- EG1ShQStop

The process module shall contain (see EG1PRC.SYS on page 21):
+ the sequence hooks

The tool module shall contain:

- common datatypes, notably process data, process tool data and internal
process data

+ common PERS data
+ common code
See also Installation on page 24.

Application name

The name of the application must be defined in eg7tol.sys as
CONST string EG1_APP_NAME := "EG1";

The string length of the name, in this case “EG1”, is limited to 5 characters.

There must also be a routine, DefAppName, in EG1bas.sys where the application
name is retrieved:
PROC DefAppName(INOUT string name)
name := EG1l_app_name;
ENDPROC
The routine DefAppName is called when the system is starting up, so it is very
important that the routine exists in EG1bas.sys.

Process task

It is very important that the names of the process tasks begins with “DA_PROC”
(DA_PROC1, DA_PROC2...). Look in the example code file eg1sys.cfg.

Initialization

The following instructions shall be used in the EG1ShPowerOn-routine (in
eg1bas.sys) to initialize the application and it’s processes. Putting it in
EG1ShPowerOn ensures the installation of the application automatically at warm
start and a proper Power Failure support by the frame work.

Initialization of application and processes

DaGetAppDescr returns an array containing the configured application descriptors.

Continues on next page

3HAC050994-001 Revision: - 15

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.1 Designing a discrete application

Continued

DaGetPrcDescr returns an array containing the configured process descriptors.

DaGetNumOfProcs |returns how many processes that are configured in the system.

DaGetNumOfRob returns how many robots in the system that run a discrete application
(in a MultiMove system there can be more than one robot -> more
than one application descriptor).

EG1GetRobNo returns the index in the application descriptor that have the same
task number as current RAPID task.

Process transfer data definition

DaDefProcData defines three essential data for the application. Their content will
be stored by the framework as current data at each process start. The current data
remains stable during the complete process.

e process data
+ process tool data
- internal process data

This data has to be defined for each process. They have to be defined as PERS
variables (see egT1tol.sys). The process data and process tool data shall be known
to the end user. The internal process data may serve the application writer such
as to make data coming from the instruction parameters accessible in the sequence
hooks without showing them to the end user.

The data type shall be defined by the RECORD statement. It is the application writer’s
choice if it shall alterable to the end user. The internal process data is the only data
type with the restriction that the first element has to be of type daintdata and
named internal.
RECORD myprocintdat
IRequired element, because it’s used by the kernel.._;
daintdata internal;
ENDRECORD
Current data of these three data types may be extracted or changed in the sequence
hooks by DaGetCurrData and DaSetCurrData.

User variables

DaDefUserData defines data which enables the application writer to influence the
framework behaviour. The framework will access the persistent data directly, i.e.
a change of the content of such a user data is immediately recognized by the
framework. This kind of data is of installation type and it is not supposed to be
updated between or in the shell routine unless a NoConc-order was given. If a user
data is not installed the framework will use it’s default value.

Example:
PERS num my_max_prog_no := 63;
DaDefUserData proc_desc, my_max_prog_no, DA PROG_MAX;

The following table brings up all available user data. For detailed description of
the palette of available user data, see Process sequence on page 19.

user data selector type

DA_PROC_TIMEOUT num

Continues on next page

16

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.1 Designing a discrete application
Continued

user data selector type
DA_SIMULATE_PROC bool
DA_SIM_TIME num
DA_AUTO_RESTART bool
DA_PROG_MAX num
DA_PARITY num
DA_ASYNC_START bool
DA_START_TYPE num
DA_FORCED_SEQ bool

External device connection signals
DaDeTExtSig defines I/O-signals connected to an external device such as a weld
timer. If an optional signal is omitted, the framework will not use it. For further
details, see DaDefEx1Sig - Discrete application - definition of the external signals
on page 39.

Process signals
DaDefProcSig defines I/O-signals used by the framework such as information
about process status. If an optional signal is omitted, the framework will not use
it. See Instructions for further details.

Designing the shell-routine
The shell routine is the end users method to run the application with the motion.
The prototype-format of the shell-routine is free to be designed by the application
writer. Some guidelines should however be considered.

The shell routine shall encapsulate a call of the routine DaProcML/DaProcMJ. The
routine moves the robot to the assigned position and at the same time executes
the process sequence. The movement is by default concurrent.

The module where the shell routine is declared has to be defined in the task T_ROB1
as NOSTEPIN.

Required elements of the shell routine are:

» deactivation / activation of the processes (in a MultiMove system all processes
should not be deactivated)

+ preparation of the transfer data
* running DaProcML

+ error clause

« backward clause

A template of the shell routine and the time event calculation hook is described on
the following pages.

Continues on next page
3HAC050994-001 Revision: - 17
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.1 Designing a discrete application
Continued

Template of a master routine
The master shell routine should at least have the robtarget, speed data and wobjdata
in the parameter list. How the parameters are gathered and if they are optional or
not is decided by the application writer.

Observe that the descriptors, number of processes and so on have been fetched
in the Power On routine (see EG1BAS.SYS on page 20 and Power On on page 25).

PROC EGIML (robtarget ToPoint \identno 1D, speeddata Speed, num
EquipNo, PERS tooldata Tool \PERS wobjdata WObj \switch InPos)

VAR bool found := FALSE;

I Check if THIS task has a running process, if any deactivate
I it. In a MultiMove system every application descriptor
I uses different motion planners, 'connected" processes use
I the same motion planner). See eglsys_mms.cfg.
FOR 1 FROM 1 TO EG1_NOF_ROB DO
IF EG1_app_desc{rob_no}.MotPlan = EG1_prc_desc{i}.MotPlan
DaDeactProc EG1_prc_desc{i};
ENDFOR

I Activate the process/processes that are connected to THIS
I motion task. See eglsys.cfg/eglsys mms.cfg.
FOR j FROM 1 TO EG1_NOF_PROC DO
IF EG1_app_desc{rob_no}_MotPlan = EG1_prc_desc{j}-MotPlan
AND EG1_prc_desc{j}-Active = FALSE THEN
found := TRUE;

I Save the equipment number for this process
I descrip tor
EG1_prc_desc{j}-EquipNo := EquipNo;

I Activate the first inactive process belonging to
I current application descriptor
DaActProc EG1_prc_desc{j};
ENDIF
ENDFOR

IF found = FALSE THEN
TPWrite "No process were configured for this task. Check the
configuration.';
Stop;
ELSE
IF (XX_err_no = XX_NO_ERR) THEN
I Move to the work position and start the processes
DaProcML ToPoint, Speed, Tool \WObj?WObj \InPos?InPos \ID?ID;

ELSE
DaProcML ToPoint, Speed, Tool \WObj:=WObj \InPos?InPos \ID?ID
\PreconError;
ENDIF

Continues on next page
18 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.1 Designing a discrete application
Continued

ENDIF

BACKWARD
1 Perform backward actions

I Move to the weld position.
MoveL ToPoint \ID?ID, Speed, FINE, Tool \WObj?WObj;

ERROR
I Perform error actions before raising the error
RAISE;

ENDPROC

I Before DaProcML/DaProcMJ moves the TCP it will call the

I time event calculation hook DaCalcEvtXX. Here must all the

I event times be initiated for each process.

PROC DaCalcEvtXX (num EquipNo, VAR num EventTimes{*})

I Calculate the event times or extract them from the parameters
EventTimes{1} = ...;
EventTimes{2} = ...;

ENDPROC

Process sequence
The discrete application framework encapsulates a sequence execution in
connection to a fine point motion. It is typically used to monitor an external process
device. It takes care of:
« Setting the program number for the process controller device including parity
bit
+ Starting the external device process by either a start signal or the program
number.
« Waiting for a ready, timeout or external stop signal after process start
» Resetting the start signal after receiving the ready/timeout/external stop
signal
« Calling application writer’s RAPID hooks.
» Logical sequence jumps (hook retry)
« Process restart after power failure
» Process canceling when moving the program pointer

 Interrupting and resuming the process at program stop/restart before the
main action has started.

Each active process has it’s own independent sequence run. All sequences are
started at the same time by the DaProcML/DaProcMJ-instruction. When all have
successfully finished their tasks this is reported back to the application master of
the framework which decides that the entire application has finished. The sequence
is synchronized with the motion and the event times. On request (see Sequence
parameters on page 20) the time delays may be omitted when the motion is no

Continues on next page
3HAC050994-001 Revision: - 19
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.1 Designing a discrete application
Continued

longer synchronizing, i.e. in case of a retry of the sequence when the end position
is already reached.

Sequence parameters
The sequence may be influenced by parameters controlled from the RAPID shell,

notably the user PERS data. The following list shows existing parameters, the
related user data selector and the default value if not defined by the user:

Parameter |User data selector Description Default
function
Process DA_PROC_TIMEOUT | Time out for waiting for the process ready |1 s
timeout signal. The time is started when the start
signal is set to the external device
Process sim-| DA_SIMULATE_PROC | Simulation of the process. If simulation is|No simula-
ulation TRUE the start signal is not set. After the |tion
simulation time (defined by
DA_SIM_TIME) has passed on the ready
signal is set
Process sim-|DA_SIM_TIME Time to simulate the process 1s
ulation time
Automatic re- DA_AUTO_RESTART |Number of times the complete process |0, i.e. no
start should re-run after ready signal timeout |auto restart
before stopping by calling the timeout
hook
Maximum DA_PROG_MAX Maximum allowed program number. The|63
program value should match the length of the ex-
number ternal program schedule. (The maximum
value that can be used here is 8388607,
e.g a 23 bit group.)
Program par- | DA_PARITY Weld schedule parity calculation. Possible [None
ity values: DA NONE, DA EVEN, DA_ODD
Asynchron- |DA_ASYNC_START |TRUE value: The inpos event hook and |Wait for in-
ous start the following start of the process is not |pos
waiting for inpos but immediately ex-
ecutes as soon as the last time event has
executed
External DA_START_TYPE |The external device may initiate the pro- | Start signal
device start cess by setting either the start signal initiator
type (=DA_START_TRIG) or the program num-
ber (=DA_PROG_TRIG)
Skipping DA_FORCED_SEQ |The sequence delays are omitted if the |No forced
delays motion is no longer synchronizing, not- |sequence
ably after a retry

Application writer’s hooks
The application writer’'s hooks are the code entries where the application specific
code is defined. The name has to follow the below description where again “EG1”
is the application name (see Application name on page 15).

EG1BAS.SYS
The following hook shall be defined in eg1bas.sys.

DaCalcEvtEG1l |(num EquipNo, VAR num EventTimes{*})

Continues on next page
20

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

EG1PRC.SYS

2.1.1 Designing a discrete application
Continued

EquipNo Equipment number, which is an extra information to make it easier to
find data if stored in arrays
EventTimes Time is an array where the time events 1 through 3 shall be returned

from the calculation. The order has to be: Time{1} >= Time{2} >= Time{3}
else this order will be forced by the framework.

The following hooks shall be defined in eg1prc.sys. Each sequence hook is called
once for each process. The routine parameter format is the same for all procedures:

ProcNo Process number, which is used to get the correct process descriptor in
the process descriptor array.
Status Contains the execution result and information about where to resume

the sequence. For possible values see Sequence control on page 22.

Parl and Par2

Dummy parameters currently not used.

They are called in the following moments of the sequence:

DaPrepPrcEGl

(PERS num Status, num ProcNo, bool Parl, string Par2)
Called at the start of the motion

DaTmEVtl1EG1L

(PERS num Status, num ProcNo, bool Parl, string Par2)
Called at the first time event of the motion

DaTmEVt2EG1L

(PERS num Status, num ProcNo, bool Parl, string Par2)
Called at the second time event of the motion

DaTmEVt3EG1L

(PERS num Status, num ProcNo, bool Parl, string Par2)
Called at the third time event of the motion

DaStartEG1l

(PERS num Status, num ProcNo, bool Parl, string Par2)

Called before the start signal is set by the kernel. This event is either
executed at inposition (default) or immediately after the third time event.

DaEndPrcEG1

(PERS num Status, num ProcNo, bool Parl, string Par2)

Called when receiving the process ready signal. This indicates a success-
ful end of the process and should be the last process event hook.

DaExtStopEGlL

(PERS num Status, num ProcNo, bool Parl, string Par2)
Called when receiving the process external stop signal

DaTimoutEG1

(PERS num Status, num ProcNo, bool Parl, string Par2)

Called when process timeout has passed without receiving neither the
ready signal not the stop signal.

DaHoldPrcEG1

(PERS num Status, num ProcNo, bool Parl, string Par2)
Called when process hold signal is set. Trigger on positive flange

DaRIsPrcEG1

(PERS num Status, num ProcNo, bool Parl, string Par2)

Called when process hold signal is reset after a hold. Trigger on negative
flange

DaAbortPrcEG1

(PERS num Status, num ProcNo, bool Parl, string Par2)
Called when process abort signal is set. Trigger on positive flange

Continues on next page

3HAC050994-001 Revision: -

21

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.1 Designing a discrete application

Continued

Kernel actions

T1 |
- >
it T2 User hooks
MOTION | |
| | T3 |
— ||W
Data § | g Ay |
N Hold MC ! |
transfe l Re ét
[N | N Set Star{l Y QAP
| |v5et progno | || start Cleanup
| NN l | || |Release
| I 1 .y Moc
DAUSPREP DAUSEVTL | || DAU#EN
DaPrepPrcEG1() DaTmEvtlvGIl() D,aEnPIPrfEel()
| DAUSEVT2 DAUSSTART | | |
| DaTmEvt*Gl() DaSt%\rtEGl() R
| DAUSEVT3 L
| DaTmEVt3EGL() | L
' < PROCESS CYCLE | L
| EXTERNAL PROCESS CYCLE |

—i
.
| S

START SIGNAL
READY SIGNAL

IN' PROGRESS SIGNAL
e

xx1400002243

Figure 2.2: Example: Successful application sequence

Sequence control
The framework allows the user hooks to influence where to resume the sequence
through the status parameter. The following values are possible:
« DAOK
« DACANCEL

« DAUSPREP/DAUSEVT1/DAUSEVT2/DAUSEVT3/DAUSSTART/DAUSEND offers
the possibility to redo part of the sequence by entering the assigned hook.
Only backwards jumps are allowed, otherwise the return value is treated as
DAOK.

Sequence influence
The sequence may be influenced by the instruction DaSetupAppBehav. The
instruction can affect five of the eleven sequence hooks - DaPrepPrcEG1,
DaTmEvtl1EG1, DaTmEvt2EG1, DaTmEvt3EG1 and DaStartEG1. With help of
the instruction DaSetupAppBehav these five sequence hooks can be deactivated,
and thereby time will be saved. The instruction must be called before calling the
routine DaProcML/DaProcMJ. For further details, see DaSetupAppBehav - Discrete
application - sets up application behaviour on page 57.

Continues on next page
22

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

Exceptions

Process abortion

Application abortion

Process hold

Process release

2.1.1 Designing a discrete application
Continued

Each process may be aborted individually. The process is then reported back to
the application master as finished. A process abortion kills any ongoing
RAPID-execution even if for instance waiting for a user interaction in a TPReadFK.
DaAbortPrcEGL1 is called as last user hook.

« Initiator for a process abortion may be:
» Process abort signal

» User hook returned DACANCEL

« Application abortion

The entire process may be aborted. That may be the case when the user-PP is
moved, i.e. the shell routine is abandoned. It will cause a process abortion for each
active process. See above.

Initiator of an application abortion is:
» Application shell routine was given up by moving the PP

A process hold interrupts a running hook and calls DaHoldPrcEGL1. If a hold occurs
while the start signal is on the start signal is reset.

Initiator of a process hold is:
» Program execution stop before the start of the main action.

» Process hold signal goes high. This may be done in a stop/qstop-shelf if
desired.

A process release is always run after a process hold if the process was not aborted
during the hold. DaRIsPrcEG1 is called and the interrupted event hook is resumed.
If the hold occurred while the start signal was high the sequence is resumed where
the start signal was set and timeout, stop and ready is subscribed for.

Initiator of a process release is:
« Program execution is restarted.
» Process hold signal goes low which may be done in a restart-shelf if desired.

Utilities
DaGetAppDescr |Returns the descriptor of an in-
stalled application.
DaGetProcDescr |Returns the descriptor of an in-
stalled process.
DaGetCurrData |Retrieves currently valid data The data is valid from the moment
from the framework. DaProcML/DaProcMJ was called
and the motion has started i.e. when
the earlier process has finished and
released the motion.
DaSetCurrData |changes the currently used data.| The same time span as described
for DaGetCurrData.
3HAC050994-001 Revision: - 23

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.2 Installation

2.1.2 Installation

1/0 configuration

The 1/0-configuration contains required internal virtual signals which are only
known and used by the discrete application framework.

_System Parameters

eio

dapeio_i.cfg

xx1400002244

Figure 2.3: The parameter configuration

RAPID system configuration

The installation of the discrete application is done when the system is starting up.

Task installation

After a cold start in a single system there will be two tasks installed. One motion
task, T_ROB1, that will run the application, and one background task, DA _PROC1,
that will run one process. Observe that if only the DAP option is included in the
system (and no Spot option), the option MultiTasking also must be included. Then
it is possible to add process task via RobotStudio.

If there is a MultiMove system with for example four motion robots in the system,
the motion tasks will be named T_ROB1... T_ROB4, but there will still only be
two process tasks, DA_PROC1 and DA_PROC2, installed from start (if you use the
example file eg1sys.cfg). If more robots will run the discrete application, process
tasks must be added via RobotStudio. The option MultiTasking is not needed
because it is included in the MultiMove option.

Task addition

In RobotStudio it is possible to look at and configure the tasks. Under the tab
Configuration/Controller/Mechanical Unit Groups (only if you have a MultiMove
system) you can see how the configuration is done. It is also possible to change
the configuration. New background tasks (not motion tasks) will be added in
Configuration/Controller/Tasks. If the configuration file (sys.cfg) is saved an
example how part of it will look like will be like this:
CAB_TASKS:
-Name "T_ROB1"™ -Type "NORMAL"™ -UseMechanicalUnitGroup "robl"
-MotionTask
-Name "T_ROB2"™ -Type "NORMAL™ -UseMechanicalUnitGroup "rob2"
-MotionTask
-Name "DA_PROC1" -TrustLevel "SysHalt" -UseMechanicalUnitGroup
"rob1"
-Name "DA_PROC2" -TrustLevel "SysHalt" -UseMechanicalUnitGroup
""robl"

Continues on next page

24

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.2 Installation
Continued

-Name "DA_PROC3" -TrustLevel "SysHalt"” -UseMechanicalUnitGroup
"'rob2"

MECHANICAL_UNIT_GROUP:
-Name "robl" -Robot "ROB_1" -UseMotionPlanner "motion_planner_1"
-Name "rob2" -Robot "ROB_2" -UseMotionPlanner "motion_planner_2"

The example above shows two motion task “connected” to process tasks via the
mechanical unit group. Motion task T_ROB1 will use two processes and task T_ROB2
will use one process. Look also in the example code for DAP,
egisys.cfg/eg1sys_mms.cfg.

Power On

The instruction, DaShe I FPowerOn, is called by every task that will run the discrete
application, when the system is starting up. It is not possible to look into the code
because it is cryptated, but what happens is that the application and processes
are set up. The first motion task that calls DaShe I fPowerOn does the initiation. A
check is done how many motion task in the system that will work as discrete
application robots, and how many processes every application robot will use. In a
single system there is only one motion task, but in a MultiMove system there can
be up to four robots that can act as application robots. A process is “connected”
to a motion task through the MECHANICAL_UNIT_GROUP. In a single system all
tasks use the same mechanical unit group, but in a MultiMove system every motion
task uses different mechanical unit groups. It is through the “connection” motion
task/process task the system can discern which motion task will act as a discrete
application task. The process task MUST be named like DA_PROC1, DA_PROC2...
because that is how the system recognize the processes.

A maximum number of four discrete application descriptors may be installed for
the hole system, i.e. there can be four robots that run a discrete application. It is
only possible to have one discrete application configured in the system. It can be
up to four processes installed, divided between the robots.

Template of a power on routine

The routine is called by all application tasks when the system is starting up. A
check is done which of the application descriptors that corresponds to this task.
The application descriptors are saved in an array and the index of the descriptor
is saved in a persistent variable and is later on used in other routines, among
others, EG1ML.

PROC EG1ShPowerOn()
I Init EG1l PERS
I Get process descriptors
DaGetPrcDescr EG1l_prc_desc;

I Get application descriptor
DaGetAppDescr EG1_app_desc;

I Get number of processes

Continues on next page

3HAC050994-001 Revision: - 25

© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.2 Installation
Continued

Module

DaGetNumOfProcs EG1_NOF_PROC;

1 Get number of robots (In a MultiMove system there can

1 be more than one robot -> more than one application

1 descriptor)

DaGetApplndex rob_no;

1 Define the process data

FOR j FROM 1 TO EG1_NOF_PROC DO
DaDefProcData EG1_prc_desc{j}, EG1 prc_data{j},
EG1_tool_data{j}, EGl_int data{j};

I Define the user data
DaDefUserData EG1_prc_desc{j}, EG1_prc_time_out,
DA_PROC_TIMEOUT;

TEST j
CASE 1:
I Define the external signals
DaDefExtSig EG1l_prc_desc{l}, doStartl, diReadyl, goProgNol;
I Define the process signals
DaDefProcSig EG1_prc_desc{1}, dolnProgressl, doProcFaultl,
doExtFaultl;

CASE 2:

ENDTEST
ENDFOR
ENDPROC

The framework will allocate encoded modules with predefined names in the tasks.
It will also allocate the application specific modules provided by the application
writer. Those three modules must follow the rules below:

Continues on next page

The three system modules (a base, process and tool module) must be loaded
into the directory HOME:/dap. Then make a warmstart.

Name convention: EG1BAS.SYS, EG1PRC.SYS and EG1TOL.SYS where
"EG1" is the name of the application used in DaDefAppName (see Application
name on page 15).

26

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.2 Installation
Continued

RAPID task and module setup example
The following description is in accordance to the example with the application
"EG1" in the initialization chapter. It shows one task that runs the application,
T_ROB1, and three processes connected to it, DA PROC1, DA _PROC2 and DA PROC3.

-Program memory: **Shared"
System module DATOOL System module

| Data I [Types || Data |

Routines | @ Routines ![I

Figure 2.4: Module Allocation for Discrete application

xx1400002245

-Program memory: task 0 (T_ROB1)
—Program |

System modules h—.

Main module
[Programdata |

Main Routines
routine !I

System module DABASE —, [SYstem module EG1BAS—

Routines | @ Routines

xx1400002246

Figure 2.5:

rProgram memory: DA_PROC1

—System module DAPROC —System module EG1PRC
| Data I Main ITI

Routines

-

Routine

xx1400002247

Figure 2.6:

Continues on next page
3HAC050994-001 Revision: - 27
© Copyright 2005-2014 ABB. All rights reserved.

2 Programming discrete application

2.1.2 Installation

Continued
—Program memory: DA _PROC2
—System module DAPROC —System module EG1PRC -
| Data | Main | Data
Routine
Routine Routines | |
xx1400002248
Figure 2.7:
rProgram memory: DA_PROC3
—System module DAPROC —System module EGIPRC —
Routine
Routine Routines
xx1400002249
Figure 2.8:
With the DAP option it follows a executable application and a framework of the
three system modules. There are six files connected to the executable application,
namely:
- EG1.PRG
« EG1BAS.SYS
- EG1PRC.SYS
- EG1TOL.SYS
- EG1_EIO.CFG
« READ_EG1.TXT
Before running this application read the file READ_EG1.TXT. The name of the three
system modules is as follows:
« EG1BAS.SYS
- EG1PRC.SYS
- EG1TOL.SYS
28 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.1.1 dadescapp - Discrete application - application descriptor

3 RAPID Reference

3.1 RAPID Data types

3.1.1 dadescapp - Discrete application - application descriptor

Description
dadescapp (Discrete Application - Application descriptor) is used to describe an
application within the discrete application.

Overview
Data of the type dadescapp contains a reference to an installed application within
the discrete application. It is linked during the power on sequence of the system,
where the instruction DaShel fPowerOn is called. Every motion task that is
configured (i.e. has a process “connected”) to run a discrete application will create
an instance of an application descriptor.

In a MultiMove system it is possible to have a maximum of four instances of an
application descriptor, i.e. only four robots can run run a discrete application.

Example
I The new application name. The string length of the name

I is limited to 5 characters.

CONST string EG1_APP_NAME := "EG1";

PERS string DaAppName := ""';

I Number of possible robots running an application. In a MultiMove

I system there will be possible to have four intances of an

I application, in a single system one.

CONST num EG1_MAX_NOF_ROB := 4;

1 Application descriptor

PERS dadescapp EG1_app_desc{EG1_MAX_NOF_ROB} := [[0, O, O, O, O,
0, 0, ™1, -..1:

I Get application descriptor
DaGetAppDescr EG1_app_desc;

This data can then be used as shown in the example below.
IF EG1_app_desc{1}.-taskno = 1 THEN

ENDIF

A new application EG1 will be installed and the descriptors of this new application
will be the allocated data EG1_app_desc.

The declarations above must exist in the file eg1tol.sys. And it is very important
that the instruction DefAppName exist in EG1bas.sys, so the system will know the
name of the application.

Continues on next page

3HAC050994-001 Revision: - 29
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.1.1 dadescapp - Discrete application - application descriptor
Continued

The application name is declared by the variable EG1_APP_NAME and is retrieved
during the start up sequence, by the routine DefAppName. A new application EG1
will be installed and instances of the descriptor of this new application will be the
allocated data EG1_app_desc. If it is a MultiMove system, an instance per motion
task that runs the discrete application will be installed.

When the system is starting up the application descriptors are installed and can
be “picked up” with the instruction DaGetAppDesr.

Components

ipm
ipm number
Data type: num
Internal use

identification
Data type: num

Internal use

taskno
task number

Data type: num

The task running this instance of application

motplan
motion planner
Data type: num

The motion planner this instance of appliction is using

noofprocs
number of processes

Data type: num
Number of processes this instance of application has “connected”

dadamno
damaster number

Data type: num

Internal use

robotname
robot name

Data type: string

Name of the robot that runs this instance of the application

taskname
task name

Continues on next page
30 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.1.1 dadescapp - Discrete application - application descriptor

Continued
Data type: string
Name of the task that runs this instance of the application
Related information
For information about See
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
Characteristics of non-value data | Technical reference manual - RAPID overview
types Discrete application summary on page 7
3HAC050994-001 Revision: - 31

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.1.2 dadescprc - Discrete application - process descriptor

3.1.2 dadescprc - Discrete application - process descriptor

Description

dadescprc (Discrete Application - Process descriptor) is used to describe an
process within

the discrete application.

Overview

Data of the type dadescprc contains a reference to an installed process in an
already installed application within the discrete application.

It is linked to a new process during the power on sequence of the system. For
every process task (DA_PROCX) that is configured in the system, there will be a
new process.

In a MultiMove system, it is possible to have a maximum of four instances of

process descriptors, i.e. only four equipments can be active in the system at the
same time (every equipment “uses” one process descriptor).

Example

I Possible number of processes in the system.
CONST num NOF_POSS_PROCS := 4;

I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS PROCS} := [[O0, O, O, O, O, O, O,
0, FALSE], --.1;

I Get process descriptors
DaGetPrcDescr proc_desc;

This data can then be used as shown in the example below.
IF proc_desc{1}.taskno = 1 THEN

ENDIF

When the system is starting up, the processes are installed. The process descriptors
can be “picked up” with the instruction DaGetPrcDescr and will be the allocated
data proc_desc.

Components

ipm

ipm number
Data type: num
Internal use

identification
Data type: num

Continues on next page

32

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

taskno

motplan

procno

equipno

daprocno

active

3.1.2 dadescprc - Discrete application - process descriptor
Continued

Internal use

task number
Data type: num

Number of the task that uses this process descriptor.

motion planner
Data type: num

Number of the motion planner that uses this process descriptor.

process number
Data type: num

Number of processes “connected” to currrent application descriptor. Up to four
processes can be used in a system, divided between the application descriptors.

equipment number
Data type: num

Number of the equipment

process number
Data type: num

Number of process, i.e if the process name is “DA_PROC1”, then daprocno = 1

active
Data type: bool

Tells if the process is active or not

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Characteristics of non-value data | Technical reference manual - RAPID overview
types Discrete application summary on page 7
3HAC050994-001 Revision: - 33

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.1.3 daintdata - Discrete application - internal data

3.1.3 daintdata - Discrete application - internal data

Description
daintdata (Discrete Application - Internal data) is used to define internal data
within the discrete application.
Overview
Discrete application - Internal data is a data type used for internal data transfer
between the developer of the application and the discrete application framework.
The data is setup before process start and it shall be used in the user hooks to
gain information from the current process.
Components
prog_no
Program Number
Data type: num
The program number for the external device.
noconc
No Concurreny
Data type: bool
No concurrency information for the process execution. If this flag is set to TRUE
the process will be executed in no concurrency mode.
equip_act
Equipment Active
Data type: bool
Process belong to the assigned equipment is active if this flag is set to TRUE.
start_no

act_start_no

Start Number

Data type: num

The subprocess (e.g. dual tool) number information to the external device.
1: Start1 Ready1 -> Subprocess1

2: Start2 Ready2 -> Subprocess2

12: Start1 Ready1 Start2 Ready2 -> Subprocess1 first, Subprocess2 second
21: Start2 Ready?2 Start1 Ready1 -> Subprocess2 first, Subprocess1 second

Active Start Number
Data type: num

The active start number information (see start_no), the value is set by the discrete
application framework and shall not be changed.

Continues on next page

34

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.1.3 daintdata - Discrete application - internal data

Continued

counterl
Data type: num
The counter of the execution for the subprocess 1.
counter?2
Data type: num
The counter of the execution for the subprocess 2.
prog_name
Program Name
Data type: string
The program name for the external device. This component is not yet implemented.
When daintdatais initiated then give this component the value of an empty string.
Example
I Definition of the intdata
RECORD swintdata
daintdata internal;
num component2;
ENDRECORD
PERS swintdata internal_datal := [[1, FALSE, TRUE, 1, 1, 0, O,
"1, 1, ... 1;
I Setup the internal data
internal_datal.internal.prog_no := 1;
internal_datal.internal _.noconc := FALSE;
internal_datal.internal.euip_act := TRUE;
internal_datal.internal.start_no := 1;
internal_datal.internal.act_start _no := 1;
internal_datal.internal.counterl := 0;
internal_datal.internal.counter2 := O;
internal_datal.internal _.prog_name := ""';
Structure

<dataobject of daintdata>

<prog_no of num>
<noconc of bool>
<equip_act of bool>
<start_no of num>
<act_start_no of num>
<counterl of num>
<counter2 of num>
<prog_name of string>

3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

35

3 RAPID Reference

3.2.1 DaActProc - Discrete application - activate process

3.2 RAPID Instructions

3.2.1 DaActProc - Discrete application - activate process

Description
DaActProc is used to activate a connected process in the application within the
discrete application framework.
Examples
I Possible number of processes in the system
CONST num NOF_POSS_PROCS := 4;
I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS_PROCS};
I Get process descriptors
DaGetPrcDescr proc_desc;
I Activate process
DaActProc proc_desc{l};
The first process will be activated after the DaActProc... execution.
Arguments
DaActProc ProcDesc
ProcDesc
Process Descriptor
Data type: dadescprc
The descriptor of the connected process to be activated.
Limitations
The number of active processes at the same time is limited to 4.
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

DaActProc [ProcDesc’:=”] < persistent array {*} (PERS) of

dadescprc > ”;

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
36 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.2 DaDeactAllProc - Discrete application - deactivate all processes

3.2.2 DaDeactAllProc - Discrete application - deactivate all processes

Description
DaDeactAlIProc is used to deactivate all active processes in the application
within the discrete application framework.
Examples
I Possible number of processes in the system.
CONST num NOF_POSS_PROCS := 4;
I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS_PROCS};
I Get process descriptors
DaGetPrcDescr proc_desc;
I Deactivate all processes
DaDeactAlIProc;
All active processes will be deactivated after the DaDeactAlIProc ... execution.
Limitations
When trying to deactivate all processes, be sure that a minimum of one process
is already active. Otherwise the program execution will result in a fatal RAPID user
error.
Syntax

DabDeactAllProc ”;”

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
3HAC050994-001 Revision: - 37

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.3 DaDeactProc - Discrete application - deactivate process

3.2.3 DaDeactProc - Discrete application - deactivate process

Description
DaDeactProc is used to deactivate a connected process in the application within
the discrete application framework.
Examples
I Possible number of processes in the system
CONST num NOF_POSS_PROCS := 4;
I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS_PROCS};
I Get process descriptors
DaGetPrcDescr proc_desc;
I Activate process
DaDeactProc proc_desc{1};
The first process will be deactivated after the DaDeactProc... execution.
Arguments
DaDeactProc ProcDesc
ProcDesc
Process Descriptor
Data type: dadescprc
The descriptor of the connected process to be deactivated.
Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

DaDeactProc [ProcDesc’:

dadescprc > 7;”

=7 7] < persistent array {*} (PERS) of

Related information

For information about

See

Application descriptor

dadescapp - Discrete application - application
descriptor on page 29

Process descriptor

dadescprc - Discrete application - process descriptor
on page 32

38

3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.4 DaDefExtSig - Discrete application - definition of the external signals

3.2.4 DaDefExtSig - Discrete application - definition of the external signals

Description
DaDefExtSig is used to define the external signals of the connected process
within the discrete application.
Examples
I Possible number of processes in the system
CONST num NOF_POSS_PROCS := 4;
I Allocate the desriptor for the new processes
VAR dadescprc proc_desc{NOF_POSS_ PROCS};
I The event times of the processes
VAR num evt_time_prcl{3} := [2.5, 1.8, 1.0];
VAR num evt_time_prc2{3} := [2.2, 1.7, 0.8]
I The first time event
VAR num First_time_event;
I Get process descriptors
DaGetPrcDescr proc_desc;
I Define the external signals for process one
DaDefExtSig proc_desc{1}, doStartl, diReadyl, goProgNol
The external signals will be defined as specified after DaDefExtSig ... execution.
B oo
Those signals must be already configurated in the system.
Arguments
DaDefExtSig ProcDesc Startl [\Start2] Readyl [\Ready2] [\Reset]
[\Stop] ProgNo [\ProgParity]
ProcDesc
Process Descriptor
Data type: dadescprc
The descriptor of the connected process.
Startl
Data type: signaldo
The start signal one of the connected process. This signal is used to start the
process of the external device. Startl is set if the value of start_no and
act_start noindaintdatais 1.
[\Start2]
Data type: signaldo
Continues on next page
3HAC050994-001 Revision: - 39

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.4 DaDefExtSig - Discrete application - definition of the external signals

Continued
The start signal two of the connected process (optional). If this signal is defined,
the optional argument Ready2 must also be in use. The signal is used if start_no
or act_start _noin daintdatais 2. If this optional signal is not defined in the
instruction Startl will be used.
Readyl
Data type: signaldi
The ready signal one of the connected process. This signal is used to subscribe
for the end of the external process. Ready1 is subscribed for if start_no or
act_start_noin daintdatais 1. When the signal is received the main action
ready hook is executed.
[\Ready2]
Data type: signaldi
The ready signal two of the connected process (optional). If this signal is defined,
the optional argument Start2 must also be in use. The signal is used if start_no
or act_start _noin daintdatais 2. If this optional signal is not defined in the
instruction Ready1 will be used.
[\Reset]
Data type: signaldo
The reset signal of the connected process. The output is pulsed (10ms) after the
execution of the main action timeout or stop hook. If the signal is not defined, it
will not be used.
[\Stop]
Data type: signaldi
The stop signal of the connected process. This signal is used to subscribe for a
stop signal from the external device. When the signal is received, the main action
stop hook is executed. If the signal is not defined, it will not be used.
ProgNo
Program Number
Data type: signalgo
The program number signals of the connected process.
[\ProgParity]
Program Parity
Data type: signaldo
The program parity of the program number. The different parities are:
* None parity if this optional argument is omitted.
» Odd parity if this optional argument is in use and the output signal is 0.
» Even parity if this optional argument is in use and the output signal is 1.
Limitations

Make sure that the signals are configured. Otherwise the program execution will
result in a fatal RAPID user error.

Continues on next page

40

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.4 DaDefExtSig - Discrete application - definition of the external signals
Continued

Syntax
DaDefExtSig

[ProcDesc’:="] < persistent array {*} (PERS) of dadescprc >

[Startl’:="] < variable (VAR) of signaldo >
[°\” Start2 *:=" < variable (VAR) of signaldo >] “,~”
[Readyl’:="] < variable (VAR) of signaldi >
[”\” Ready2 *:=” < variable (VAR) of signaldi >]
[\” Reset’:=” < variable (VAR) of signaldo >]
[°\” Stop *:=" < variable (VAR) of signaldi >] *,”
[ProgNo”:="] < variable (VAR) of signalgo >
[°\” ProgParity ”:=" < variable (VAR) of signaldo >]“;”
Related information
For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
3HAC050994-001 Revision: - 41

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.5 DaDefProcData - Discrete application - definition of the process data

3.2.5 DaDefProcData - Discrete application - definition of the process data

Description
DaDefProcData is used to define the data of a connected process within the
discrete application.

Examples
Sequence for define data for one process:

I Possible number of processes in the system
CONST num NOF_POSS_PROCS := 4;

I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS_ PROCS};

I Definition of the procdata
RECORD procdata

string string_comp;
ENDRECORD
I Definition of the tooldata
RECORD tooldata

string string_comp;

num time_eventl;

num time_event2;

num time_event3;
ENDRECORD
I Definnition of the intdata
RECORD intdata

daintdata internal;

string string_comp;
ENDRECORD

I Allocate a procdata, a tooldata and a intdata

PERS procdata prc_data{NOF_POSS_PROCS} := [["'PROCDATAl], -.-.1:

PERS tooldata tool_data{NOF_POSS_PROCS} := [['"TOOLDATA1l', 0.20,
0.1, 0.05], .-.1;

PERS intdata int_data{NOF_POSS PROCS} := [[[5, TRUE, TRUE, 1, 1,
0, 0,""], "INTDATA1"], -..1;:

I Get process descriptors

DaGetPrcDescr proc_desc;

I Define the process data

DaDefProcData proc_desc{1}, prc_data{l}, tool_data{l}, int data{l};

The process data will be defined as specified after DaDefProcData ... execution.

ﬂ Note

Those data must be predefined as persistents in a defined module.

Continues on next page
42 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

Arguments

ProcDesc

ProcData

ToolData

IntProcData

3.2.5 DaDefProcData - Discrete application - definition of the process data
Continued

DaDefProcData ProcDesc ProcData ToolData IntProcData

Process Descriptor
Data type: dadescprc
The descriptor of the connected process.

Process Data
Data type: anytype
The process data of the connected process.

Tool Data
Data type: anytype
The tool data of the connected process.

Internal Process Data
Data type: anytype
The internal process data of the connected process.

Limitations

When defining process data, the process connected to the current application must
be already installed. Otherwise the program execution will result in a fatal RAPID
user error.

If the specified data are not PERS, the program execution will result in a fatal RAPID
user error.

Syntax

DaDefProcData
[ProcDesc”:="] < persistent array {*} (PERS) of dadescprc >

[ProcData’:=>] < persistent (PERS) of anytype > “,”
[ToolData”:="] < persistent (PERS) of anytype > “,~
[IntProcData’:="] < persistent (PERS) of anytype > ”;’

Related information

For information about See

Application descriptor dadescapp - Discrete application - application
descriptor on page 29

Process descriptor dadescprc - Discrete application - process descriptor
on page 32

Internal data daintdata - Discrete application - internal data on
page 34

3HAC050994-001 Revision: - 43

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.6 DaDefProcSig - Discrete application - definition of the process signals

3.2.6 DaDefProcSig - Discrete application - definition of the process signals

Description
DaDefProcSig is used to define the process signals of the connected process
within the discrete application.
Examples
I Possible number of processes in the system
CONST num NOF_PROCS := 4;
I Allocate descriptors for the new processes
PERS dadescprc procdesc{NOF_PROCS};
I Get process descriptors
DaGetPrcDescr proc_desc;
I Define the process signals for process one
DaDefProcSig proc_desc{l1}, dolnProgressl, doProcFaultl, doExtFaultl;
The process signals will be defined as specified after DaDefProcSig ... execution.
F o
Those signals must be already configurated in the system.
Arguments
DaDefProcSig ProcDesc InProgress ProcFault ExtFault [\Cancel]
[\Hold]
ProcDesc
Process Descriptor
Data type: dadescprc
The descriptor of the connected process.
InProgress
In Progress
Data type: signaldo
The in progress signal of the connected process. This signal is set when the process
is running.
ProcFault
Process Fault
Data type: signaldo
The process fault signal of the connected process. This signal is set when a process
fault occured.
ExtFault

External Fault
Data type: signaldo

Continues on next page

44

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.6 DaDefProcSig - Discrete application - definition of the process signals
Continued

The external fault signal of the connected process. This signal is set when an
external fault occured.

[\Cancel]
Data type: signaldi
The cancel signal of the connected process. If this argument is specified and the
input is set to 1, the process will be aborted an reset.

[\Hold]
Data type: signaldi
The hold signal of the connected process. If this argument is specified and set to
1, the process will be hold untill the signal is set to 0 again.

Limitations
Make sure that the signals are configured. Otherwise the program execution will
result in a fatal RAPID user error.

Syntax

DaDefProcSig
[ProcDesc’:="] < persistent array {*} (PERS) of dadescprc >

[InProgress”:="] < variable (VAR) of signaldo > “,~
[ProcFault’:="] < variable (VAR) of signaldo > ”,~
[ExtFault’:="] < variable (VAR) of signaldo >

[\” Cancel *:=" < variable (VAR) of signaldi >]

[”\” Hold *:=" < variable (VAR) of signaldi >] *“;”’

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
3HAC050994-001 Revision: - 45

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.7 DaDefUserData - Discrete application - define user data

3.2.7 DaDefUserData - Discrete application - define user data

Description

DaDefUserData is used to define process user data within the discrete
application.The instruction transmits the location of the data which gives the
framework the possibility to access the same data location as the RAPID-program,
i.e. changing the content of such a PERS data is immediately affecting the
framework.

Examples

I Possible number of processes in the system
CONST num NOF_POSS_PROCS := 4;

I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS_PROCS};

I Process ready timeout
PERS num timeout := 2;

I Get process descriptors

DaGetPrcDescr proc_desc;

I Define timeout user data

DaDefUserData proc_desc{j}, timeout, DA _PROC_TIMEOUT;

The specified user data will be defined as specified for the selected process after
DaDefUserData ... execution. Note that all processes may very well share the
same PERS data of a certain user data type if it shall be valid for the entire
application.

Arguments

ProcDesc

UserData

DaDefUserData ProcDesc UserData Selector

Process Descriptor
Data type: dadescprc

The descriptor of the connected process.

User Process Data
Data type: anytype

User process data of any type. The type however has to match the intended user
data. See table below.

user data selector type
DA_PROC_TIMEOUT num
DA_SIMULATE_PROC bool
DA_SIM_TIME num

Continues on next page

46

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.7 DaDefUserData - Discrete application - define user data
Continued

user data selector type
DA _AUTO_RESTART bool
DA_PROG_MAX num
DA_PARITY num
DA_ASYNC_START bool
DA_START_TYPE num
DA_FORCED_SEQ bool
Selector
User Process Data Selector
Data type: num
Selector that describes the type of user data.
B oo
For further details, see Programming discrete application on page 13.
Syntax

DaDefUserData
[ProcDesc’:="] < persistent array {*} (PERS) of dadescprc >

[UserData’:=>] < persistent (PERS) of anytype > 7.~
[Selector’:="] < expression (IN) of num> ~”;~

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
3HAC050994-001 Revision: - 47

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.8 DaGetCurrData - Discrete application - get current data

3.2.8 DaGetCurrData - Discrete application - get current data

Description

DaGetCurrData is used to get a selected data of the connected process within
the discrete application.

Examples

Sequence for define data for one process:

Continues on next page

Sequence for define data for one process:

I Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

I Allocate descriptors for the new processes

PERS dadescprc proc_desc{NOF_POSS_ PROCS};
I User defined data types for the process

RECORD procdata
string string_comp;

ENDRECORD

RECORD tooldata
string string_comp;
num time_eventl;
num time_event2;
num time_event3;

ENDRECORD

RECORD intdata
daintdata internal;
string string_comp;

ENDRECORD

I The allocated data objects

PERS procdata prc_data{NOF_POSS_PROCS} := [["'PROCDATAl1l], --.1:

PERS tooldata tool_data{NOF_POSS_PROCS} :=

0.1, 0.05], -.--1;:

[["TOOLDATA1"™, 0.20,

PERS intdata int_data{NOF_POSS_PROCS} := [[[5, TRUE, TRUE, 1, 1,

0, 0,"™"], "INTDATA1"], --.1:
VAR tooldata cur_tool_data;

I Get process descriptors
DaGetPrcDescr proc_desc;

I Define the users data of the connected process
DaDefProcData proc_desc{1}, prc_data{l}, tool_data{l}, int data{l};

I Get the current tool data of the connected process
DaGetCurrData prc_desc{l}, cur_tool _data, DA TOOL_DATA;

48

© Copyright 2005-2014 ABB. All rights reserved.

3HAC050994-001 Revision: -

3 RAPID Reference

3.2.8 DaGetCurrData - Discrete application - get current data
Continued

The allocated data object cur_tool_data will be get the current tool data
(DataSelect = DA_TOOL_DATA) of the connected process prc_desc. This data
can then be used as shown in the example below.

IF cur_tool_data.componentl = 1 THEN

ENDIF

Arguments
DaGetCurrData ProcDesc Data DataSelect
ProcDesc
Process Descriptor
Data type: dadescprc
The descriptor of the connected process.
Data
Data type: anytype
The allocated data object to be updated with the selected current data.
DataSelect
Data Selector
Data type: num
The type of data to be get. The available data types are:
1 DA_PROC_DATA Discrete application process data
2 DA_TOOL_DATA Discrete application tool data
3 DA_INTPROC_DATA Discrete application internal process data
oo
These data selectors are predefined in the system.
Limitations
If the data selector not valid, the program execution will result in a fatal RAPID
user error.
Syntax

DaGetCurrData
[ProcDesc”:="] < persistent array {*} (PERS) of dadescprc >

[Data *:=] <variable (VAR) of anytype>
[DataSelect ”:=7] <expression (IN) of num>

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Continues on next page
3HAC050994-001 Revision: - 49

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.8 DaGetCurrData - Discrete application - get current data

Continued
For information about See
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
50 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.9 DaProcML/MJ - Discrete Application - multiple processes

3.2.9 DaProcML/MJ - Discrete Application - multiple processes

Description

DaProcML and DaProcMJ is used in discrete applications to control the motion
and a set of up to 4 processes. DaProcML moves the TCP lineary to the target
position. DaProcMJ moves the TCP non-lineary to the target position. Both
instructions is calling the process RAPID user hooks during motion.

Examples

DaProcML p100, vmax, tool5;

The TCP of tool5 is moved on a linear path to the position p100 with the speed
given in vmax and a set of up to 4 processes might be in preparation.

The process position is always a stop (discrete) position since the processes are
always performed while the manipulator is standing still. The tools of the processes
can be in preparation on the way to the position, that depends on the setup of the
application processes. The processes are started and supervised until finished
and the tools are in the home position.

DaProcMJ pl100, vmax, tool5 \PreconError;

The TCP of tool5 is moved on a non-linear path to the position p100 with the
speed given in vmax and no process is performed.

Arguments

ToPoint

Speed

Tool

[\WObj]

DaProcML ToPoint Speed Tool [\WObj] [\InPos] [\PreconError] [\ID]
[\TLoad]

Data type: robtarget

The destination point of the robot and external axes. It is defined as a named
position or stored directly in the instruction (marked with an * in the instruction).

Data type: speeddata

The speed data that applies to movements. Speed data defines the velocity for the
tool centre point, the tool reorientation and external axes.

Data type: tooldata

The tool in use when the robot moves. The tool centre point is the point moved to
the specified destination position, and should be the position of the process tools.

Work Object
Data type: wobjdata

The work object (coordinate system) to which the robot position in the instruction
is related.

Continues on next page

3HAC050994-001 Revision: - 51

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.9 DaProcML/MJ - Discrete Application - multiple processes

Continued
This argument can be omitted, and if it is, the position is related to the world
coordinate system by using the default work object wobjO.
If, a stationary TCP or coordinated external axes are used, this argument must be
specified in order to perform a movement relative to the work object.
Data type:
[\InPos]
In Position
Data type: switch
The optional switch argument \ InPos inhibits the preactions of the connected
processes. That means, if this argument is specified, the event times will be set
internal to O for all the connected processes. The events will then be generated
when the manipulator is in the target position.
[\Preconkrror]
Precondition Error
Data type: switch
The optional switch argument \PreconError indicates a precondition error of the
connected processes. If this argument is specified, the manipulator will move to
the target position without perfoming a process.
[\I1D]
Synchronization id
Data type: identno
This argument must be used in a Mul tiMove system, if coordinated synchronized
movement, and is not allowed in any other cases.
The specified id number must be the same in all cooperating program tasks. The
id number gives a guarantee that the movements are not mixed up at runtime.
[[\TLoad]

Data type: loaddata

The \TLoad argument describes the total load used in the movement. The total
load is the tool load together with the payload that the tool is carrying. If the \TLoad
argument is used, then the loaddata in the current tooldata is not considered.

If the \TLoad argument is set to 1oadO, then the \TLoad argument is not
considered and the loaddata in the current tooldata is used instead. For a
complete description of the TLoad argument, see the MoveL instruction in Technical
reference manual - RAPID Instructions, Functions and Data types.

Continues on next page
52 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.9 DaProcML/MJ - Discrete Application - multiple processes

Continued
Program execution
Internal sequence in a DaProcML/DaProcMJ instruction:
Sequence Action Information
If a precondition error | Move to the target position The used work object, tool and
is indicated: without performing a process. |destination position is stored in:

« da_current_wobj
« da_current_tool
« da_current_point

and can be reused for some ser-
vice functions etc

End of the
DaProcML/DaProcMJ
instruction

If no precondition error| Calculate the event times, if the | Retrieve the calculated first time
is indicated: argument \ InPos is omitted, for| event from the discrete applica-

all processes by calling the tion framework.
RAPID user hook DaCal cEvtXX
(XX = Application name) and
setup the time events.

ﬂ Note

If the argument \InPos is defined, the RAPID user hook DaCal cEvtXX will not
be called, instead all the event times will be setup with 0.

Setup the three different I/O trigg actions to activate the RAPID process user
hooks.

Execute the movement towards the destination position with the trigg events
on the path. If the argument \ InPos is used, all the events will be generated
when the manipulator has reached his destination position.

The process sequences will be started and the RAPID user hooks will be
called as described in Programming discrete application on page 13.

Wait until the processes are ready or canceled.

The default program execution is the concurrency mode, that means the next
movement will be precalculated, but the manipulator will be hold (the next
movement instruction is prepared). The manipulator will be released and
carry on with the already precalculated movement after the processes are
ready or canceled. The user can change the execution mode by setting the
internal daintdata component noconc to TRUE. If the component noconc
is set to TRUE, the program execution stops and waits for the ready signal
of every process without precalculating the next movement.

The current in use work object, tool and the destination position is stored in:
A da_current_wobj
B da_current_tool

C da_current_point and can be reused for some service functions
etc.

End of the DaProcML/DaProcMJ instruction.

Continues on next page

3HAC050994-001 Revision: -

53
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.9 DaProcML/MJ - Discrete Application - multiple processes

Continued

Syntax

DaProcML/DaProcMJ

[ToPoint”:="] < expression (IN) of robtarget > ~,”

[Speed”:="] < expression (IN) of speeddata > ~,”
[Tool”:="] < persistent (PERS) of tooldata >

’\” InPos]
’\” PreconError]

(o W e W W o B

>\” WObj ”:=” < persistent (PERS) of wobjdata >]

>\~ ID ”:=" < expression (IN) of identno >]
"\" TLoad ":="] < persistent (PERS) of loaddata >] ";"

Related information

For information about

See

Definition of velocity

Data type speeddata in Technical reference
manual - RAPID Instructions, Functions and Data
types.

Definition of zonedata

Data type zonedata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

Definition of tool

Data type tooldata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

Definition of work objects

Data type wobjdata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

Definition of loaddata

Data type loaddata in Technical reference manu-
al - RAPID Instructions, Functions and Data types.

MovelL

Instruction MovelL

in Technical reference manual - RAPID Instructions,
Functions and Data types.

54

3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.10 DaSetCurrData - Discrete application - set current data

3.2.10 DaSetCurrData - Discrete application - set current data

Description

DaSetCurrData is used to set a selected data of the connected process within
the discrete application .

Examples

Sequence for define data for one process:

I Possible number of processes in the system

CONST num NOF_POSS_PROCS := 4;

I Allocate descriptors for the new processes

PERS dadescprc procdesc{NOF_POSS_PROCS};

I User defined data types for the process

RECORD procdata
string string_comp;

ENDRECORD

RECORD tooldata
string string_comp;
num time_eventl;
num time_event2;
num time_event3;

ENDRECORD

RECORD intdata
daintdata internal;
string string_comp;

ENDRECORD

I The allocated data objects

PERS procdata prc_data{NOF_POSS_PROCS} := [[''PROCDATAl1l], --.1:
PERS tooldata tool_data{NOF_POSS_PROCS} := [[""TOOLDATA1", 0.20,

0.1, 0.05], -.-1;:

PERS intdata int_data{NOF_POSS_PROCS} := [[[5, TRUE, TRUE, 1, 1,

0, 0,"™"], "INTDATA1"], --.1:
VAR tooldata cur_tool_data;

I Get process descriptors
DaGetPrcDescr proc_desc;

I Define the users data of the connected process
DaDefProcData prc_desc{1}, prc_data{l}, tool_data{l},int_data{l};

I Get the current tool data of the connected process
DaGetCurrData proc_desc{l}, cur_tool _data, DA TOOL_DATA;

cur_tool_data.string_comp := TOOLDATAZ2;

DaSetCurrData proc_desc, cur_tool _data, DA_TOOL_DATA;

Continues on next page

3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

55

3 RAPID Reference

3.2.10 DaSetCurrData - Discrete application - set current data

Continued
The tool data (DataSelect = DA TOOL_DATA) of the connected process
proc_desc{1} will be set to the new defined user tool data cur_tool_data.
Arguments
DaSetCurrData ProcDesc Data DataSelect
ProcDesc
Process Descriptor
Data type: dadescprc
The descriptor of the connected process.
Data
Data type: anytype
The data to be setup in the connected process.
DataSelect
Data Selector
Data type: num
The type of data to be get. The available data types are:
1 DA_PROC_DATA Discrete application process data
2 DA_TOOL_DATA Discrete application tool data
3 DA_INTPROC_DATA Discrete application internal process data
oo
These data selectors are predefined in the system.
Limitations
If the data selector not valid, the program execution will result in a fatal RAPID
user error.
Syntax
DaSetCurrData

[ProcDesc’:="] < persistent array {*} (PERS) of dadescprc >

[Data’:="] < variable (VAR) of anytype > “,~
[DataSelect’:="] < expression (IN) of num > 7;~

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
56 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour

3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour

Description
DaSetupAppBehav enables the application writer to influence the framework.
Usually the framework will call six of the eleven sequence hooks once. Five of
them can be deactivated with aid of the instruction DaSetupAppBehav, namely
DaPrepPrcXX, DaTmEvtliXX, DaTmEvt2XX, DaTmEvt3XX, DaStartXX. This
will save time as each hook takes at least 30 ms to execute.
DaSetupAppBehav will affect all the active processes. A call to DaSetupAppBehav
without arguments will activate all the deactivated sequence hooks, i.e. the
framework will call all the five sequence hooks once.
Examples
I There is no code written in the both sequence hooks -
I DaTmEvt2XX and DaTmEvt3XX, so they will be deactivated.
DaSetupAppBehav \Excludel:=TmEvt2 \Exclude2:=TmEvt3;
In this example the internal kernel won’t make a call to neither DaTmEvt2XX or
DaTmEvt3XX. This two sequence hooks won’t be called for the activated processes.
Arguments
DaSetupAppBehav [\Excludel] [\Exclude2] [\Exclude3] [\Exclude4]
[\Exclude5]
[\Excludel]
Data type: action_num
A selector connected to one of the five possible sequence hooks. The selector will
deactivate the belonging sequence hook. The following table shows the possible
selector constants.
sequence hook selector sequence hook
DaPrepPrcXX PrepPrc
DaTmEvt1 XX TmEvt1[\Exclude2]
DaTmEvt2XX TmEvi2
DaTmEvt3XX TmEvt3
DaStartXX Start
[\Exclude2?]
Same as \Excludel.
[\Exclude3]
Same as \Excludel.
[\Exclude4]
Same as \Excludel.
[\Exclude5]
Same as \Excludel.
Continues on next page
3HAC050994-001 Revision: - 57

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour

Continued
Limitations
The instruction must be called before calling the routine DaProcML/DaProcMJ.

Syntax

DaSetupAppBehav

[>\” Exclude2 ”:=” < expression (IN) of action_num >]

[’\” Exclude3 ”:=" < expression (IN) of action_num >]

[>\ Exclude4 ”:=” < expression (IN) of action_num >]

[>\” Exclude5 ”:=” < expression (IN) of action_num >]
58 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.12 DaStartManAction - Discrete application - execute an application manually

3.2.12 DaStartManAction - Discrete application - execute an application manually

Description
DaStartManAction is used to run an application independently of the motion.
If no argument is used, the processes that are already active will run. If arguments
are used, all other processes will be stopped and only the specified processes will
run.
Examples
Example 1
I Execute the application independently of the motion
DaStartManAction;
Example 2
I Execute the application independently of the motion
I with process 1 and 3 running and the other processes stopped
DaStartManAction \Procl \Proc3;
Arguments
DaStartManAction [\Procl] [\Proc2] [\Proc3] [\Proc4]
[\Proci]
Data type: switch
Is used to run process 1 and stop all processes not specified as argument in the
DaStartManAction instruction.
[\Proc2]
Data type: switch
Is used to run process 2 and stop all processes not specified as argument in the
DaStartManAction instruction.
[\Proc3]
Data type: switch
Is used to run process 3 and stop all processes not specified as argument in the
DaStartManAction instruction.
[\Proc4]
Data type: switch
Is used to run process 4 and stop all processes not specified as argument in the
DaStartManAction instruction.
Syntax
DaStartManAction
[\Procl]
[\Proc2]
[\Proc3]
[\Proc4]
Continues on next page
3HAC050994-001 Revision: - 59

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.12 DaStartManAction - Discrete application - execute an application manually

Continued

Related information

For information about

See

Application descriptor

dadescapp - Discrete application - application
descriptor on page 29

Process descriptor

dadescprc - Discrete application - process descriptor
on page 32

60

3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.13 DaGetAppDescr - Discrete application - get application descriptors

3.2.13 DaGetAppDescr - Discrete application - get application descriptors

Description

DaGetAppDescr is used to get the array of application descriptors from the
application within the discrete application.

Examples

I Number of possible robots running an application. In a MultiMove
I system there will be possible to have four intances of an

I application, in a single system one.

CONST num MAX_NOF_ROB := 4;

I Application descriptor
PERS dadescapp app_desc{MAX_NOF_ROB};

I Get application descriptors
DaGetAppDescr app_desc;

This data can then be used as shown in the example below.
IF app_desc{1l}.taskno = 1 THEN

ENDIF

The descriptors of the application will be given to the allocated data object
app_desc.

Arguments

AppDesc

DaGetAppDescr AppDesc

Application Descriptor
Data type: dadescapp
An allocated data object to get the application descriptor.

Limitations

The application name must not haave more than 5 characters. Otherwise the
program execution will result in a fatal RAPID user error.

Syntax

DaGetAppDescr
[AppDesc’:="] < persistent array {*} (PERS) of dadescapp > ”;

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
3HAC050994-001 Revision: - 61

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference
3.2.14 DaGetApplindex - Discrete application - index of application array

3.2.14 DaGetAppindex - Discrete application - index of application array

Description
DaGetApplIndex is used to find out what application descriptor current RAPID
task uses.
Examples
I Number of possible robots running an application. In a MultiMove
I system there will be possible to have four intances of an
I application, in a single system one.
CONST num MAX_NOF_ROB := 4;
I Application descriptor
PERS dadescapp app_desc{MAX_NOF_ROB} := [[O0, O, O, O, O, O, O, "],
--1:
I Index of the application descriptor array
VAR num index;
I Get which RAPID task is running now
DaGetApplndex index;
This data can then be used as shown in the example below.
IF app_desc{index}.taskno = 1 THEN
ENDIF
I In a MultiMove system there can be more than
I one robot -> more than one application descriptor
The application descriptors are saved in an array. The array is filled in when the
system is starting up. To find out which application descriptor THIS task uses, the
instruction DaGetAppIndex can be used. This instruction is only useful in a
MultiMove system, where more than one task can run the application.
Arguments
DaGetApplndex index
index
Data type: num
The index of the array of application descriptors.
Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

DaGetApplIndex [index”:=>] < variable (VAR) of num> ~;~

Continues on next page
62 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.14 DaGetApplindex - Discrete application - index of application array
Continued

Related information

For information about

See

Application descriptor

dadescapp - Discrete application - application
descriptor on page 29

Process descriptor

dadescprc - Discrete application - process descriptor

on page 32

3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

63

3 RAPID Reference

3.2.15 DaGetNumOfProcs - Discrete application - get number of processes

3.2.15 DaGetNumOfProcs - Discrete application - get number of processes

Description
DaGetNumOfProcs is used to find out how many processes that are installed in
the system.
Examples
I Number of processes
VAR num NOF_PROCS;
I Get number of processes
DaGetNumOfProcs NOF_PROCS
Number of processes depends on how many DA_PROC tasks that are configured
for the system. Two DA_PROC tasks installed means that NOF_PROCS will be two.
Arguments
DaGetNumOfProcs numofprocs
numofprocs
number of processes
Data type: num
Number of processes installed in the system.
Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

DaGetNumOfProcs [numofprocs’:=”] < variable (VAR) of num> 7;~

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
64 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.16 DaGetNumOfRob - Discrete application - number of robots

3.2.16 DaGetNumOfRob - Discrete application - number of robots

Description
DaGetNumOfRob is used to find out how many robots (i.e tasks) running the
application, that are installed in the system.
Examples
I Number of robots
VAR num NOF_ROB;
I Get number of robots
DaGetNumOfRob NOF_ROB;
Number of robots depends on how many motion tasks in the system that are
configured to run the application. A motion task (T_ROB1, T_ROB2..)runs an
application if at least one process task (DA_PROC1, DA PROC2...)is connected
to the same mechanical unit group. In a single system all tasks use the same
mechanical unit group, but in a MultiMove system that differs. For more information,
see Task installation on page 24.
Arguments
DaGetNumOfRob numofrob
numofrob
number of robots
Data type: num
Number of application tasks installed in the system.
Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

Related information

DaGetNumOfRob [numofrob’:=>] < variable (VAR) of num> 7;~”

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
3HAC050994-001 Revision: - 65

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.17 DaGetPrcDescr - Discrete application - get process descriptor

3.2.17 DaGetPrcDescr - Discrete application - get process descriptor

Description
DaGetPrcDescr is used to get the array of all connected process descriptors of
the application within the discrete application.

Examples
I Possible number of processes in the system.

CONST num NOF_POSS_PROCS := 4;

I Number of processes installed

PERS num NOF_POSS_PROCS := 1;

I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS_ PROCS};

I Get process descriptors
DaGetPrcDescr proc_desc;

This data can then be used as shown in the example below.
IF proc_desc{1}.taskno = 1 THEN

ENDIF

The descriptors of the application will be given to the allocated data object
proc_desc.

Arguments
DaGetPrcDescr ProcDesc AppDesc [\ProcName] | [\ProcNo]

ProcDesc
Process Descriptor

Data type: dadescprc
An allocated data object to get the process descriptor.

AppDesc
Application Descriptor

Data type: dadescapp
The descriptor of the connected application.

[\ProcName]
Process Name

Data type: string

The name of the connected process. If this argument is omitted, the connected
process descriptor which refers to the process number will be retrieved.

[\ProcNo]
Process Number

Data type: num

Continues on next page
66 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.2.17 DaGetPrcDescr - Discrete application - get process descriptor
Continued

The number of the connected process. If this argument is omitted, the connected
process descriptor which refers to the process name will be retrieved.

Limitations
One of the two optionals arguments (\ProcName, \ProcNo) must be specified,
otherwise the program execution will result in an fatal RAPID user error.

Error handling
If a process, referenced either by the process name or process number, cannot
be found, the system variable ERRNO is set to ERR_DA_UNKPROC. This error can
then be handled in the RAPID error handler (see example below).

Example

VAR dadescapp app_desc;
VAR dadescprc prc_desc{4};
VAR string app_hame;

VAR num proc_no;

DaGetActApp app_desc, app_name;

FOR i FROM 1 TO 4 DO
proc_no := i;
DaGetPrcDescr prc_desc{i}, app_desc \ProcNo:=proc_no;
ENDFOR
ERROR
IF (ERRNO = ERR_DA_UNKPROC) THEN
TPWrite "Can’t find the process " \Num:=proc_no;

TRYNEXT;
ENDIF

If any of the processes cannot be found, the user will get a message about which
process does not exist.

Syntax
DaGetPrcDescr

[ProcDesc’:="] < variable (VAR) of dadescprc > ”,~
[AppDesc’:="] < variable (VAR) of dadescapp >
[“\"ProcName”:=”] < expression (IN) of string >

| [“\’ProcNo”:="] < expression (IN) of num > ~;~

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
3HAC050994-001 Revision: - 67

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event

3.3 RAPID Functions

3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event

Description
DaGetFstTimeEvt is used to get the first time event of all activated processes
within the discrete application.

Examples
Sequence for define data for one process:

I Possible number of processes in the system
CONST num NOF_POSS_PROCS := 4;

I Allocate descriptors for the new processes
PERS dadescprc proc_desc{NOF_POSS_PROCS};

I The event times of the processes
VAR num evt_time_prcl{3} := [2.5, 1.8, 1.0];
VAR num evt_time_prc2{3} := [2.2, 1.7, 0.8]

I The first time event
VAR num first_time_event;

I Get process descriptors
DaGetPrcDescr proc_desc;

I Get number of processes
DaGetNumOfProcs NOF_PROCS;
I Setup the time events in DaCalcEvtXX

I Activate all processes

FOR 1 FROM 1 TO NOF_PROCS
DaActProc proc_desc{i};

ENDFOR
I Get first time event
first_time_event := DaGetFstTimeEvt();

The content of the variable first_time_event will be 2.5 (the first time event
which is specified in the current running processes: evt_time_prcl{1}) after
the DaGetFstTimeEvt execution.

Return value
Data type: num

The first time event in seconds.

Continues on next page
68 3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event
Continued

Limitations
When using DaGetFstTimeEvt the processes must be activated. It will always
return the first time event from the current activated processes.
If no process is active, the program execution will result in a fatal RAPID user error.
Syntax

DaGetFstTimeEvt “(° “)” 7;~

A function with a return value of the data type num.

Related information

For information about See

Application descriptor dadescapp - Discrete application - application
descriptor on page 29

Process descriptor dadescprc - Discrete application - process descriptor
on page 32

3HAC050994-001 Revision: - 69

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system

3.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system

Description

Examples

DaCheckMMSOpt is used to find out if this is a Single or MultiMove system.

IF (DaCheckMMSOpt()) THEN

ENDIF

If an option for MultiMove is installed, DaChecMMSOpt returns TRUE, otherwise
FALSE (single system).

Return value

Data type: bool
TRUE: MultiMove system
FALSE: Single system

Limitations

If no application is active, the program execution will result in a fatal RAPID user
error.

Syntax

DaCheckMMSOpt “(7)) ~;~7
A function with a return value of the data type bool.

Related information

For information about See

Application descriptor dadescapp - Discrete application - application
descriptor on page 29

Process descriptor dadescprc - Discrete application - process descriptor
on page 32

70

3HAC050994-001 Revision: -
© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.3 DaGetMP - Discrete application - Get motion planner

3.3.3 DaGetMP - Discrete application - Get motion planner

Description

DaGetMP is used to get the motion planner that a specific application descriptor
is configured for.

Examples

Return value

I Number of possible robots running an application. In a MultiMove

I system there will be possible to have four intances of an

I application, in a single system one.

CONST num MAX_NOF_ROB := 4;

I Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB} := [[O, O, O, O, O, O, O, "],
--1;

VAR num mp;

mp:= DaGetMP(1);

The application descriptors are saved in an array. The index of the array for a
particular application descriptor is sent to DaGetMP. The motion planner that is
configured for the descriptor is returned. This function is only useful in a MultiMove
system, where all motion tasks uses different motion planners. For more
information, see Application manual - MultiMove.

Data type: num

Number of motion planner

Arguments
DaGetMP(index)
Index
Data type: num
The index of the array of application descriptors.
Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

DaGetMP “(C[index *:=”] < variable (VAR) of num> ") 7;~
A function with a return value of the data type num.

Related information

For information about See

Application descriptor dadescapp - Discrete application - application
descriptor on page 29

Continues on next page

3HAC050994-001 Revision: - 71

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.3 DaGetMP - Discrete application - Get motion planner

Continued
For information about See
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
72 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.4 DaGetRobotName - Discrete application - Get Robot name

3.3.4 DaGetRobotName - Discrete application - Get Robot hame

Description

DaGetRobotName is used to get the name of the robot that uses a specific
application descriptor.

Examples

I Number of possible robots running an application.

I In a MultiMove system, it is possible to have four intances

I of an application, in a single system one.

CONST num MAX_NOF_ROB := 4;

I Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB} := [[O, O, O, O, O, O, O, "],
--1;

VAR string rob_name;
rob_name := DaGetRobotName(1);

The application descriptors are saved in an array. The index of the array for a
particular application descriptor is sent to DaGetRobotName. The name of the
robot that uses the descriptor is returned.

Return value

Data type: string

Name of robot

Arguments
DaGetRobotName(index)
Index
Data type: num
The index of the array of application descriptors.
Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

DaGetRobotName
“C[[index “:="] < variable (VAR) of num> ") 7;~

A function with a return value of the data type string.

Related information

For information about See
Application descriptor dadescapp - Discrete application - application
descriptor on page 29
Continues on next page
3HAC050994-001 Revision: - 73

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.4 DaGetRobotName - Discrete application - Get Robot name

Continued
For information about See
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
74 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.5 DaGetTaskName - Discrete application - Get Task name

3.3.5 DaGetTaskName - Discrete application - Get Task name

Description

DaGetTaskName is used to get the name of the of the task, that uses a specific
application descriptor.

Examples

I Number of possible robots running an application.

I In a MultiMove system, it is possible to have four intances

I of an application, in a single system one.

CONST num MAX_NOF_ROB := 4;

I Application descriptor

PERS dadescapp app_desc{MAX_NOF_ROB} := [[O, O, O, O, O, O, O, "],
--1;

VAR string task_name;
task_name := DaGetTaskName(l);

The application descriptors are saved in an array. The index of the array for a
particular application descriptor is sent to DaGetTaskName. The name of the task
that uses the descriptor is returned.

Return value

Data type: string

Name of motion task.

Arguments
DaGetTaskName (index)
Index
Data type: num
The index of the array of application descriptors.
Limitations
If no application is active, the program execution will result in a fatal RAPID user
error.
Syntax

DaGetTaskName
“C[[index “:="] < variable (VAR) of num> ") 7;~

A function with a return value of the data type string.

Related information

For information about See

Application descriptor dadescapp - Discrete application - application
descriptor on page 29

Continues on next page

3HAC050994-001 Revision: - 75

© Copyright 2005-2014 ABB. All rights reserved.

3 RAPID Reference

3.3.5 DaGetTaskName - Discrete application - Get Task name

Continued
For information about See
Process descriptor dadescprc - Discrete application - process descriptor
on page 32
76 3HAC050994-001 Revision: -

© Copyright 2005-2014 ABB. All rights reserved.

Contact us

ABB AB

Discrete Automation and Motion
Robotics

S-721 68 VASTERAS, Sweden
Telephone +46 (0) 21 344 400

ABB AS, Robotics

Discrete Automation and Motion
Nordlysvegen 7, N-4340 BRYNE, Norway
Box 265, N-4349 BRYNE, Norway
Telephone: +47 51489000

ABB Engineering (Shanghai) Ltd.
5 Lane 369, ChuangYe Road
KangQiao Town, PuDong District
SHANGHAI 201319, China
Telephone: +86 21 6105 6666

www.abb.com/robotics

Power and productivity
for a better world™

3HAC050994-001, Rev -, en

AL ED D
Mpm

	Cover Page
	Table of contents
	1 Discrete application summary
	Overview
	1.1 Summary (DAP)
	Discrete application features
	Principles of discrete applications
	Layers of a discrete application
	Programming principles
	Discrete application instructions
	Discrete application functions
	Discrete application data types
	Discrete application user hooks

	2 Programming discrete application
	2.1 Programming summary
	Overview
	2.1.1 Designing a discrete application
	About this section
	Modules
	Base module
	Process module
	Tool module

	Application name
	Process task
	Initialization
	Initialization of application and processes
	Process transfer data definition

	User variables
	External device connection signals
	Process signals
	Designing the shell-routine
	Template of a master routine
	Process sequence
	Sequence parameters
	Application writer’s hooks
	EG1BAS.SYS
	EG1PRC.SYS

	Sequence control
	Sequence influence
	Exceptions
	Process abortion
	Application abortion
	Process hold
	Process release

	Utilities

	2.1.2 Installation
	I/O configuration
	RAPID system configuration
	Task installation
	Task addition
	Power On
	Template of a power on routine
	Module
	RAPID task and module setup example

	3 RAPID Reference
	3.1 RAPID Data types
	3.1.1 dadescapp - Discrete application - application descriptor
	Description
	Overview
	Example
	Components
	ipm
	id
	taskno
	motplan
	noofprocs
	dadamno
	robotname
	taskname

	Related information

	3.1.2 dadescprc - Discrete application - process descriptor
	Description
	Overview
	Example
	Components
	ipm
	id
	taskno
	motplan
	procno
	equipno
	daprocno
	active

	Related information

	3.1.3 daintdata - Discrete application - internal data
	Description
	Overview
	Components
	prog_no
	noconc
	equip_act
	start_no
	act_start_no
	counter1
	counter2
	prog_name

	Example
	Structure

	3.2 RAPID Instructions
	3.2.1 DaActProc - Discrete application - activate process
	Description
	Examples
	Arguments
	ProcDesc

	Limitations
	Syntax
	Related information

	3.2.2 DaDeactAllProc - Discrete application - deactivate all processes
	Description
	Examples
	Limitations
	Syntax
	Related information

	3.2.3 DaDeactProc - Discrete application - deactivate process
	Description
	Examples
	Arguments
	ProcDesc

	Limitations
	Syntax
	Related information

	3.2.4 DaDefExtSig - Discrete application - definition of the external signals
	Description
	Examples
	Arguments
	ProcDesc
	Start1
	[\Start2]
	Ready1
	[\Ready2]
	[\Reset]
	[\Stop]
	ProgNo
	[\ProgParity]

	Limitations
	Syntax
	Related information

	3.2.5 DaDefProcData - Discrete application - definition of the process data
	Description
	Examples
	Arguments
	ProcDesc
	ProcData
	ToolData
	IntProcData

	Limitations
	Syntax
	Related information

	3.2.6 DaDefProcSig - Discrete application - definition of the process signals
	Description
	Examples
	Arguments
	ProcDesc
	InProgress
	ProcFault
	ExtFault
	[\Cancel]
	[\Hold]

	Limitations
	Syntax
	Related information

	3.2.7 DaDefUserData - Discrete application - define user data
	Description
	Examples
	Arguments
	ProcDesc
	UserData
	Selector

	Syntax
	Related information

	3.2.8 DaGetCurrData - Discrete application - get current data
	Description
	Examples
	Arguments
	ProcDesc
	Data
	DataSelect

	Limitations
	Syntax
	Related information

	3.2.9 DaProcML/MJ - Discrete Application - multiple processes
	Description
	Examples
	Arguments
	ToPoint
	Speed
	Tool
	[\WObj]
	
	[\InPos]
	[\PreconError]
	[\ID]
	[[\TLoad]

	Program execution
	Syntax
	Related information

	3.2.10 DaSetCurrData - Discrete application - set current data
	Description
	Examples
	Arguments
	ProcDesc
	Data
	DataSelect

	Limitations
	Syntax
	Related information

	3.2.11 DaSetupAppBehav - Discrete application - sets up application behaviour
	Description
	Examples
	Arguments
	[\Exclude1]
	[\Exclude2]
	[\Exclude3]
	[\Exclude4]
	[\Exclude5]

	Limitations
	Syntax

	3.2.12 DaStartManAction - Discrete application - execute an application manually
	Description
	Examples
	Example 1
	Example 2

	Arguments
	[\Proc1]
	[\Proc2]
	[\Proc3]
	[\Proc4]

	Syntax
	Related information

	3.2.13 DaGetAppDescr - Discrete application - get application descriptors
	Description
	Examples
	Arguments
	AppDesc

	Limitations
	Syntax
	Related information

	3.2.14 DaGetAppIndex - Discrete application - index of application array
	Description
	Examples
	Arguments
	index

	Limitations
	Syntax
	Related information

	3.2.15 DaGetNumOfProcs - Discrete application - get number of processes
	Description
	Examples
	Arguments
	numofprocs

	Limitations
	Syntax
	Related information

	3.2.16 DaGetNumOfRob - Discrete application - number of robots
	Description
	Examples
	Arguments
	numofrob

	Limitations
	Syntax
	Related information

	3.2.17 DaGetPrcDescr - Discrete application - get process descriptor
	Description
	Examples
	Arguments
	ProcDesc
	AppDesc
	[\ProcName]
	[\ProcNo]

	Limitations
	Error handling
	Example

	Syntax
	Related information

	3.3 RAPID Functions
	3.3.1 DaGetFstTimeEvt -Discrete application - get the first time event
	Description
	Examples
	Return value
	Limitations
	Syntax
	Related information

	3.3.2 DaCheckMMSOpt - Discrete application - Check if MultiMove system
	Description
	Examples
	Return value
	Limitations
	Syntax
	Related information

	3.3.3 DaGetMP - Discrete application - Get motion planner
	Description
	Examples
	Return value
	Arguments
	Index

	Limitations
	Syntax
	Related information

	3.3.4 DaGetRobotName - Discrete application - Get Robot name
	Description
	Examples
	Return value
	Arguments
	Index

	Limitations
	Syntax
	Related information

	3.3.5 DaGetTaskName - Discrete application - Get Task name
	Description
	Examples
	Return value
	Arguments
	Index

	Limitations
	Syntax
	Related information

